
HAL Id: hal-03432449
https://hal.science/hal-03432449v1

Submitted on 17 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Nearest Centroid Classification on a Trapped Ion
Quantum Computer

Sonika Johri, Shantanu Debnath, Avinash Mocherla, Alexandros Singh,
Anupam Prakash, Jungsang Kim, Iordanis Kerenidis

To cite this version:
Sonika Johri, Shantanu Debnath, Avinash Mocherla, Alexandros Singh, Anupam Prakash, et al..
Nearest Centroid Classification on a Trapped Ion Quantum Computer. npj Quantum Information,
2021. �hal-03432449�

https://hal.science/hal-03432449v1
https://hal.archives-ouvertes.fr

Nearest Centroid Classification on a Trapped Ion Quantum Computer

Sonika Johri,1 Shantanu Debnath,1 Avinash Mocherla,2, 3 Alexandros

Singh,2, 4 Anupam Prakash,2 Jungsang Kim,1 and Iordanis Kerenidis2, 5

1IonQ Inc, 4505 Campus Dr, College Park, MD 20740
2QC Ware, Palo Alto, USA and Paris, France
3UCL, Centre for Nanotechnology, London, UK

4Université Sorbonne Paris Nord, France
5CNRS, University of Paris, France

Quantum machine learning has seen considerable theoretical and practical developments in recent
years and has become a promising area for finding real world applications of quantum computers. In
pursuit of this goal, here we combine state-of-the-art algorithms and quantum hardware to provide
an experimental demonstration of a quantum machine learning application with provable guarantees
for its performance and efficiency. In particular, we design a quantum Nearest Centroid classifier,
using techniques for efficiently loading classical data into quantum states and performing distance
estimations, and experimentally demonstrate it on a 11-qubit trapped-ion quantum machine, match-
ing the accuracy of classical nearest centroid classifiers for the MNIST handwritten digits dataset
and achieving up to 100% accuracy for 8-dimensional synthetic data.

PACS numbers:

I. INTRODUCTION

Quantum technologies promise to revolutionize the fu-
ture of information and communication, in the form of
quantum computing devices able to communicate and
process massive amounts of data both efficiently and se-
curely using quantum resources. Tremendous progress is
continuously being made both technologically and theo-
retically in the pursuit of this long-term vision.

A primary goal of current quantum computing research
is to find real-world applications of the quantum com-
puters that will become available in the coming years. In
order to arrive at these first applications, simultaneous
progress on both hardware and algorithms is required.

On the one hand, quantum hardware is making con-
siderable advances. Small quantum computers capa-
ble of running representative algorithms were first made
available in research laboratories, utilizing both trapped
ion [1, 2] and superconducting qubits [3, 4]. Performance
comparisons among different quantum computer hard-
ware have been made for running a host of quantum
computing tasks [5, 6]. Access to noisy intermediate-
scale quantum (NISQ) computers from several commer-
cial vendors is now available through cloud services. A
recent report on achieving quantum supremacy, where a
task was performed by a quantum computer that cannot
be simulated with any available classical computer [7],
is an indication that powerful quantum computers will
likely be available to researchers in the near future.

At the same time, considerable algorithmic work is un-
derway in order to reduce the resources needed for imple-
menting impactful quantum algorithms and bring them
closer to the NISQ era. For example, more NISQ variants
of amplitude estimation algorithms, a fundamental quan-
tum procedure that is used in a large number of quantum
algorithms, appeared recently [8–12]. Another example
are compilation techniques for optimizing the number of

quantum gates that have resulted in a reduction in the
number of qubits and gates for the factoring algorithm
by many orders of magnitude [13].

In this work, we focus on the area of quantum machine
learning. There are a number of reasons why machine
learning is a good area for trying to find applications
of quantum computers. First, classical machine learning
has proved to be an extremely powerful tool for a plethora
of sectors, including Healthcare, Automotive, Manufac-
turing and Finance, so understanding the enhancements
quantum computing can offer to this area will have a ma-
jor impact. Second, we already know that fault-tolerant
quantum computers with fast quantum access to clas-
sical data can provably offer advantages for many dif-
ferent applications such as classification, clustering and
recommendation systems [14–17]. In this work, we will
show that there are concrete avenues for reducing the re-
sources needed for implementing some core elements of
such algorithms, in particular for loading classical data
as quantum states and performing distance estimation
between data points. Another interesting point is that it
is desirable for classical machine learning algorithms to
be robust against noise inherent in the data. To this end,
regularization techniques that artificially inject noise into
the computation are often used to improve generalization
performance for classical neural networks [18]. Thus, one
might hope that noisy quantum computers are inherently
better suited for machine learning computations than for
other types of problems that need precise computations
like factoring or search problems. Last, there are many
performance measures one may want to improve when it
comes to machine learning - in addition to efficiency and
accuracy, metrics like interpretability, transparency, and
energy consumption are important ones where quantum
computing may offer an advantage.

However, there are significant challenges to be over-
come to make quantum machine learning practical. First,

ar
X

iv
:2

01
2.

04
14

5v
2

 [
qu

an
t-

ph
]

 9
 D

ec
 2

02
0

2

most quantum machine learning algorithms that offer
considerable speedups assume that there are efficient
ways to load classical data into quantum states. We ad-
dress this bottleneck in this paper and describe ways to
load a classical data point with logarithmic depth quan-
tum circuits and using a number of qubits equal to the
features of the data point. Another algorithmic bottle-
neck is that the solution output by the algorithm is often-
times a quantum state from which one needs to extract
some useful classical information. At times this can be
efficient, for example, when an estimate on the distance
between two such states or the identification of heavy-
hitters is desired. In general, an exponential amount of
time may be needed to extract the classical description
of the quantum state by performing tomography.

One also needs to be careful with the efficiency of
many of the quantum subroutines used in quantum ma-
chine learning, in particular linear algebra subroutines,
since their running time depends on a large number of
instance-specific parameters that need to be taken into
account before claiming any speedups. In particular,
most of these speedups will be polynomial and not ex-
ponential, and this is also corroborated by quantum in-
spired algorithms [19]. In any case, we believe the right
way to describe these quantum speedups may not be to
merely state them as exponential or polynomial, but to
quantify the extent of speedup for each application and to
see how these theoretical speedups translate in practice.

Another promising avenue for quantum machine learn-
ing pertains to the use of parametrized quantum circuits
as analogues of neural networks for supervised learning,
in particular for classification [20, 21]. In fact, classical
neural networks achieve extremely high performance for
specific classification tasks like image classification, and
one hopes that quantum analogues can achieve speedups
and further enhance the accuracy of such techniques.
Again, one needs to be careful, since we neither have
much theoretical evidence that such quantum architec-
tures will be easily trained, nor can we perform large
enough simulations to get any convincing practical evi-
dence of their performance (since we do not have large
enough quantum hardware and classical simulations in-
cur an exponential overhead). For example, architectures
that use only a constant depth and only gates between
consecutive qubits, while being suitable for near-term
quantum computers, cannot really act as a fully con-
nected neural network, since each input qubit can only
affect a constant number of output qubits. It is also be-
coming clear that the time to train such quantum vari-
ational circuits can be quite large, both because of phe-
nomena such as barren plateaus and also since designing
the architectures, choosing cost-functions and initializ-
ing the parameters is far more complex and subtle than
one may naively think [22–24]. Further work is needed
to understand the power and limitations of variational
quantum circuits for machine learning applications.

Our work is a collaboration between quantum hard-
ware and software teams that advances the state-of-the-

art of quantum machine learning implementations, bring-
ing potential applications closer to reality. Even though
the scale of the implementation remains a proof of con-
cept, our work makes significant progress towards un-
blocking a number of theoretical and practical bottle-
necks. In particular, we look at classification, one of the
canonical problems in supervised learning with a vast
number of applications. In classification, one uses a la-
belled dataset (for example, emails labelled as Spam or
Not Spam) to fit a model which is then used to predict the
labels for new data points (for example, predict whether a
new email should be labelled Spam or Not Spam). There
are many different ways to perform classification that one
can broadly place in two main categories.

The first way is similarity-based learning, where a no-
tion of similarity between data points is defined (e.g.
the Euclidean distance between data points seen as vec-
tors) and points are classified together if they are sim-
ilar. Well-known similarity-based algorithms are the
Nearest Centroid, k-Nearest Neighbors, Support Vector
Machines, etc. The second way is based on deep learn-
ing techniques, in particular on different types of neu-
ral networks (fully connected, convolutional, recurrent,
etc.). Here, the corpus of labelled data is used in or-
der to train the weights of a neural network so that once
trained it can infer the label of new data. Often, espe-
cially in cases where there is a large amount of data, neu-
ral networks can achieve better performance than more
traditional similarity-based methods. On the other hand,
similarity-based methods can offer other advantages, in-
cluding provable performance guarantees and also prop-
erties like interpretability and transparency, which are
becoming increasingly important in many sectors with
sensitive data and decision making.

Here, we focus on demonstrating a quantum analogue
of the Nearest Centroid algorithm, a simple similarity-
based classification technique. The Nearest Centroid al-
gorithm is a good baseline classifier that offers inter-
pretable results, nevertheless, its performance deterio-
rates when the data points are far away from belonging
to convex classes with similar variances. The algorithm
takes as input a number of labelled data points, where
each data point belongs to a specific class. The model
fitting part of the algorithm is very simple and it in-
volves computing the centroids, i.e. the barycenters of
each of the sets. Once the centroids of each class are
found, then a new data point is classified by finding the
centroid which is nearest to it in Euclidean distance and
assigning the corresponding label.

In our work, we design a quantum Nearest Centroid
algorithm, by constructing quantum procedures for load-
ing the classical data as quantum states and performing
a distance estimation procedure. We demonstrate the
quantum Nearest Centroid algorithm on up to 8 qubits of
a trapped ion quantum processor and achieve accuracies
comparable to corresponding classical classifiers on real
datasets, as well as 100% accuracies on synthetic data.
To our knowledge, this is the largest and most accurate

3

classification demonstration on quantum computers. Im-
portantly, we develop an error mitigation technique and
noise model analysis that prove this performance will
continue to hold as the problem size scales up.

Related experimental work. We describe here some
previous work on classification experiments on quantum
computers, in particular with neural networks. In
fact, there is a fast growing literature on variational
methods for classification on small quantum computers
[20, 21, 25–30] of which we briefly describe those that
also include hardware implementations. In [29], the
authors provide binary classification methods based
on variational quantum circuits. The classical data is
mapped into quantum states through a fixed unitary
transformation and the classifier is a short variational
quantum circuit that is learned through stochastic
gradient descent. A number of results on synthetic data
are presented showing the relation of the method to
Support Vector Machines classification and promising
performance for such small input sizes. In [30] the
authors provide a number of different classification
methods, based on encoding the classical data in sepa-
rable qubits and performing different quantum circuits
as classifiers, inspired by Tree Tensor Network (TTN)
and Multi-Scale Entanglement Renormalization Ansatz
(MERA) circuits. A 4-qubit hardware experiment for
a binary classification task between two of the IRIS
dataset classes was performed on an IBM machine
with high accuracy. In [27], the authors performed
2-qubit experiments on IBM machines and with the IRIS
dataset. They reported high accuracy for a subset of the
dataset after training a quantum variational circuit for
more than an hour and 3 million circuit runs.

The remainder of the paper is organized as follow: Sec-
tion II explains the algorithm and software development.
The experimental results and noise model are described
in Section III. We end with a discussion in Section IV.

II. ALGORITHM AND SOFTWARE

In this section, we describe the algorithm and software
tools we used to implement quantum classification.

A. Data loaders and distance estimation

We start by describing our data loaders [31]. Being
able to load classical data as quantum states that can
be efficiently used for further computation is an impor-
tant step for machine learning applications, since on the
one hand, data is, and will likely remain, predominantly
classical, and on the other, most quantum applications
are based on efficient quantum access to classical data,
whether these are linear system solvers, convex optimiza-
tion, unstructured search, etc.

Let us start by defining more precisely what we mean
by a data loader. A data loader is a procedure that, given
access to a classical data point x = (x1, x2, . . . , xd) ∈ Rd,
pre-processes the classical data efficiently, i.e. reading the

data once and spending Õ(d) time overall, and outputs a
parametrized quantum circuit of size O(d) but of depth
only O(log d), that prepares quantum states of the form

1

‖x‖

d∑
i=1

xi |i〉 .

Here, |i〉 is some representation of the numbers 1 through
d (we will use a unary representation in the experiment
but we describe other representations as well).

Let us remark that to calculate the efficiency of our al-
gorithms, we assume that quantum computers will have
the ability to perform gates on different qubits in paral-
lel. This is possible to achieve in most technologies for
quantum hardware, including ion traps [32]. The specific
quantum states we consider, also called “amplitude en-
codings” are not the only possible way to load classical
data into quantum states but they are by far the most
interesting in terms of the quantum algorithms that can
be applied to them. For example, they are the states
one needs in order to start the quantum linear system
solver procedure. Note also, that if we want to exactly
load classical data points with d dimensions then we have
d−1 degrees of freedom for defining such quantum states
(since they are normalized to be unit vectors), so we need
a circuit of size at least d − 1. In fact our circuits have
exactly d − 1 two-qubit parametrized gates as we will
see below. One also needs to keep track of the norm
of the vectors which can be easily computed during the
pre-processing.

There have been several proposals for acquiring fast
quantum access to classical data that loosely go under the
name of QRAM (Quantum Random Access Memory). A
QRAM, as described in [33, 34], in some sense would be
a specific hardware device that could “natively” access
classical data in superposition, thus having the ability
to create quantum states like the one defined above in
logarithmic time. Given the fact that such specialized
hardware devices do not yet exist, nor do they seem to
be easy to implement, there have been proposals for us-
ing quantum circuits to perform similar operations. For
example, a circuit to perform the bucket brigade architec-
ture was defined in [35], where a circuit with O(d) qubits
and O(d) depth was described and also proven to be ro-
bust up to a level of noise. A more “brute force” way of
loading a d-dimensional classical data point is through a
multiplexer-type circuit, where one can use only O(log d)
qubits but for each data point one needs to sequentially
apply d log d-qubit-controlled gates, which makes it quite
impractical. Another direction is loading classical data
using a unary encoding. This was used in [36] to describe
finance applications, where the circuit used O(d) qubits
and had O(d) depth. A parallel circuit for specifically
creating the W state also appeared in [37].

4

The loader we will use for our implementation is a
“parallel” unary loader that loads a data point with d
features, each of which can be a real number, with exactly
d qubits, d − 1 parametrized 2-qubit gates, and depth
log d. The parallel loader can be viewed as a part of a
more extensive family of loaders with Q qubits and depth
D, with QD = O(d log d), in particular one can define

an optimized loader with 2
√
d qubits and

√
d log d depth

with (d− 1) two- and three-qubit gates in total [31].
Note that the number of qubits we use, one per feature,

is the same as in most quantum variational circuit pro-
posals (e.g. [20, 30]). One last remark before we give our
construction is that here we are talking about loading the
exact classical data into quantum states, which is neces-
sary for tasks like classifying specific data points. For
other tasks, like training neural networks, one could po-
tentially use classical or quantum techniques to generate
“similar” data instead of loading the exact data. One can
also perform classical pre-processing of the “raw” data,
for example dimensionality reduction techniques, before
creating the data that one needs to load into quantum
states, which is compatible with our techniques and is
used for some of the experiments.

a. Data loader construction We start by a proce-
dure that given access to a classical data point x =
(x1, x2, . . . , xd) ∈ Rd, pre-processes the classical data ef-

ficiently, i.e. spending only Õ(d) total time, in order to
create a set of parameters θ = (θ1, θ2, . . . , θd−1) ∈ Rd−1,
that will be the parameters of the (d−1) two-qubit gates
we will use in our quantum circuit. In the pre-processing,
we also keep track of the norms of the vectors.

It is important here to notice that the classical memory
is accessed once (we use read-once access to x) and the
parameters θ are “stored inside the quantum circuit” (as
the parameters of the quantum gates), which means that
if we need to perform many operations with the specific
data point (which is the case here and, for example, in
training neural networks), we do not need to access the
classical memory again, we just need to re-run the quan-
tum circuit that already has the parameters in place.

Let us now describe how to find and store these pa-
rameters θ. The data structure for storing θ is in fact the
one used in [15], but note that there we assumed that we
have quantum access to these parameters (in the sense
of being able to query these parameters in superposition)
while here we will compute and store these parameters
classically and also encode them as the parameters of the
gates used in the quantum circuit.

At a high level, we think of the coordinates xi as the
leaves of a binary tree of depth log d. The parameters
θ correspond to the values of the internal tree nodes,
starting form the root and going towards the leaves.

We first consider the parameter series
(r1, r2, . . . , rd−1). For the last d/2 values (rd/2, . . . , rd−1),
we define an index j that takes values in the interval
[1, d/2] and define the values as

rd/2+j−1 =
√
x2

2j + x2
2j−1

For the first d/2 − 1 values, namely the values of
(r1, r2, . . . , rd/2−1), and for j in [1, d/2], we define

rj =
√
r2
2j+1 + r2

2j

We can now define the set of angles θ =
(θ1, θ2, . . . , θd−1) in the following way. We start by defin-
ing the last d/2 values (θd/2, . . . , θd−1). To do so, we
define an index j that takes values in the interval [1, d/2]
and define the values as

θd/2+j−1 = arccos

(
x2j−1

rd/2+j−1

)
, if x2j is positive

θd/2+j−1 = 2π − arccos

(
x2j−1

rd/2+j−1

)
, if x2j is negative.

For the first d/2− 1 values, namely the values for j ∈
[1, d/2], we define

θj = arccos

(
r2j

rj

)
Note that we can easily perform these calculations in

a read-once way, where for every xi we update the values
that are on the path from the i-th leaf to the root. This
also implies that when one coordinate of the data is up-
dated, then the time to update the θ parameters is only
logarithmic, since only log d values of r and of θ need to
be updated.

Now that we have found the parameters that we need
for our parametrized quantum circuit, we can define the
architecture of our quantum circuit. It will use d qubits,
d−1 two-qubit gates, log d depth, and will resemble a bi-
nary tree architecture. For convenience, we assume that
d is a power of 2.

We will use a gate that has appeared with small vari-
ants with different names as partial SWAP, or fSIM, or
Reconfigurable BeamSplitter, etc. We call this two-qubit
parametrized gate RBS(θ) and we define it as

RBS(θ) =

 1 0 0 0
0 cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 1

 (1)

One can define the above gate with imaginary off-
diagonal elements and in fact we will use that defini-
tion when we implement this on the hardware but we
keep this definition here for ease of exposition. We can
think of this gate as a simple rotation by an angle θ
on the two-dimensional subspace spanned by the vec-
tors {|10〉 , |01〉} and an identity in the other subspace
spanned by {|00〉 , |11〉}. A different way would be to
think of a single photon entering one of the two input
modes of a reconfigurable beam-splitter and getting split
into the two output spatial modes with a ratio depending
on the parameter θ. We denote by RBS†(θ) the adjoint
gate for which we have RBS†(θ) = RBS(−θ).

5

We can now describe the circuit itself. We start by
putting the first qubit in state |1〉, while the remaining
d − 1 qubits remain in state |0〉. Then, we use the first
parameter θ1 in an RBS gate in order to “split” this ‘1’
between the first and the d/2-th qubit. Then, we use
the next two parameters θ2, θ3 for the next layer of two
RBS gates, where again in superposition we “split” the
‘1’ into the four qubits with indices (1, d/4, d/2, 3d/4) and
this continues for exactly log d layers until at the end of
the circuit we have created exactly the state

|x〉 =
1

‖x‖

d∑
i=1

xi |ei〉 (2)

where the states |ei〉 are a unary representations of the
numbers 1 to d, using d qubits. The circuit appears in
Fig. 1.

FIG. 1: The data
loader circuit for an
8-dimensional data
point. The angles
of the RBS(θ) gates
starting from left
to right and top to
bottom correspond to
(θ1, θ2, . . . , θ7).

An interesting extension of our loader is that we can
trade off qubits with depth and keep the number of over-
all gates d − 1 (in this case, both RBS and controlled-

RBS gates). For example, we can use 2
√
d qubits and

O(
√
d log d) depth [31]. The circuit is quite simple, if one

thinks of the d dimensional vector as a
√
d ×
√
d ma-

trix. Then, we can index the coordinates of the vector
using two registers (one each for the row and column)
and create the state

|x〉 =
1

‖x‖

√
d∑

i,j=1

xij |ei〉 |ej〉

For this circuit, we find, in the same way as for the
parallel loader, the values θ and then create the following
circuit in Figure 2. We start with a parallel loader for a

√
d-dimensional vector using the first

√
d angles θ (which

corresponds to a vector of the norms of the rows of the
matrix) and then, controlled on each of the

√
d qubits

we perform a controlled parallel loader corresponding to
each row of the matrix.

Notice that naively the depth of the circuit is
O(d log d), but it is easy to see that one can interleave
the gates of the controlled-parallel loaders to an overall
depth of O(

√
d log d). We will not use this circuit here

but such circuits can be useful both for loading vectors
and in particular matrices for linear algebraic computa-
tions.

FIG. 2: An optimized loader for a 16-dimensional data point,
seen as a 4 × 4 matrix. The blue boxes correspond to the
parallel loader from Fig. 1 and its controlled versions.

Let us make some remarks about the data loader cir-
cuits. First, we will see in the following sections that the
circuits are quite robust to noise and amenable to efficient
error mitigation techniques. Second, we use a single type
of two-qubit gate that is native or quasi-native to differ-
ent hardware platforms. Third, we note that the con-
nectivity of the circuit is quite local, where most of the
qubits interact with very few qubits (for example 7/8 of
the qubits need at most 4 neighboring connections) while
the maximum number of interacting neighbors for any
qubit is log d. Here, we take advantage of the full con-
nectivity of the ionQ hardware platform, so we can apply
all gates directly. On a grid architecture one would need
to embed the circuit on the grid which asymptotically
requires no more than doubling the number of qubits.
b. Distance estimation circuit Given two vectors x

and y corresponding to classical data points, the Eu-
clidean distance, namely lxy = ‖x− y‖ [31] is given by

lxy =

√
‖x‖2 + ‖y‖2 − 2 ‖x‖ ‖y‖ cxy, (3)

6

where cxy = 〈x|y〉 is the inner product of the two nor-
malised vectors. Here we describe a circuit to estimate
cxy which is combined with the classically calculated vec-
tor norms to obtain lxy.

The power of the data loaders comes from the opera-
tions that one can do once the data is loaded into such
“amplitude encoding” quantum states. In this work, we
show how to use the data loader circuits to perform a
fundamental operation at the core of supervised and un-
supervised similarity-based learning, which is the estima-
tion of the distance between data points.

In fact, here we will only discuss one of the variants
of the distance estimation circuits which works for the
case where the inner product between the data points is
positive, which is usually the case for image classification
where the data points have all non negative coordinates.
It is not hard to extend the circuit with one extra qubit
to deal with the case of also non-positive inner products.

The distance estimation circuit for two data points
of dimension d uses d qubits, 2(d − 1) two-qubit
parametrized gates, 2 log d depth, and will allow us to
measure at the end of the circuit a qubit whose probabil-
ity of giving the outcome |1〉 is exactly the square of the
inner product between the two normalized data points.
From this, one can easily estimate the inner product and
the distance between the original data points. When the
hardware allows deeper quantum operations, then an am-
plitude estimation procedure can be used to decrease the
number of samples one needs to perform this estimation.
For our experiments, we directly repeatedly measured the
output state between 500-1000 times in order to get an
estimate of the inner product.

The distance estimation circuit is shown in Fig. 3, and
it consists of two parts, the first is the data loader circuit
for the first data point, and the second part is the adjoint
data loader circuit for the second data point (without the
X gate), where we recall that for the adjoint RBS†(θ) =
RBS(−θ). We can easily see that the probability the
first qubit is measured in state |1〉 is exactly the square
of the inner product of the two data points.

After the first part, the state of the circuit is |x〉, as in
Eq. 2. One can rewrite this state in the basis {|y〉 , |y⊥〉}
as

〈x, y〉 |y〉+
√

1− | 〈x, y〉 |2 |y⊥〉

Once the state goes through the inverse loader circuit
for y the first part of the superposition gets transformed
into the state |e1〉 (which would go to the state |0〉 after
an X gate on the first qubit), and the second part of
the superposition goes to a superposition of states |ej〉
orthogonal to |e1〉

〈x, y〉 |e1〉+
√

1− | 〈x, y〉 |2 |e⊥1 〉

It is easy to see that after measuring the circuit (ei-
ther all qubits or just the first qubit), the probability of
getting |1〉 in the first qubit is exactly the square of the
inner product of the two data points.

FIG. 3: The distance es-
timation circuit for two
8-dimensional data points.
The circuit in time steps 0−3
corresponds to the parallel
loader for the first data point
and the circuit in time steps
4 − 6 corresponds to the in-
verse parallel loader circuit
for the second data point
(excluding the last X gate).

We can also notice a simplification we can make in the
circuit that will reduce the number of gates and depth.
In the middle of the circuit, there are pairs of RBS gates
that are applied to the same consecutive qubits. Each
such pair of two gates can be combined to one gate whose
parameter θ is just equal to θ1 + θ2, where θ1 is the
parameter of the first gate and θ2 is the parameter of
the second gate.

This reduces the number of gates of the circuit to
3d/2 − 2 and reduces the depth by one. The final cir-
cuit used in our application is in Fig. 4.

FIG. 4: The optimized
distance estimation circuit
for two 8-dimensional data
points. The middle layer
at time step 3 corresponds
to the two merged middle
layers from Fig. 3 at time
steps 3 and 4.

7

B. The Quantum Nearest Centroid classifier

1. Algorithm and software development

We now have all the necessary ingredients to imple-
ment the quantum Nearest Centroid classification circuit.
As we have said, this is but a first, simple application
of the above tools which can readily be used for other
machine learning applications such as nearest neighbor
classifiers or k-means clustering. Let us start by briefly
defining the Nearest Centroid algorithm in the classical
setting. The first part of the algorithm is to use the train-
ing data to fit the model. This is a very simple operation
of finding the average point of each class of data, mean-
ing one adds all points with the same label and finds the
“centroid” of each class. This part will be done classi-
cally and one can think of this cost as a one-time offline
cost.

In the quantum case, one will still find the centroids
classically and then also pre-process them to find the pa-
rameters for the gates of the data loader circuits for each
one of them and their norms. This does not change the
asymptotic time of this step.

We will now look at the second part of the Nearest
Centroid algorithm which is the “predict” phase. Here,
we want to assign a label to a number of test data points
and for that we first estimate the distance between each
data point and each centroid and for each data point we
assign the label of the centroid which is nearest to it.

The quantum Nearest Centroid is rather straightfor-
ward, it follows the steps of the classical algorithm apart
from the fact that whenever one needs to estimate the
distance between a data point and a centroid, we do this
using the distance estimator circuit defined above.

The development of the quantum software followed one
of the most popular classical ML libraries, called scikit-
learn (https://scikit-learn.org/), where a classical version
of the Nearest Centroid algorithm is available. In the
code snippet below we can see how one can call the quan-
tum and classical Nearest Centroid algorithm with syn-
thetic data (one could also use user-defined data) through
QCWare’s platform Forge, in a jupyter notebook.

The function fit-and-predict first classically fits the
model. For the prediction it calls a function distance-
estimation for each centroid and each data point. The
distance-estimation function runs the procedure we
described above, using the function loader for each in-
put and returns an estimate of the Euclidean distance
between each centroid and each data point. The label
of each data point is assigned as the label of the nearest
centroid.

Note that one could imagine more quantum ways to
perform the classification, where, for example, instead of
estimating the distance for each centroid separately, this
operation could happen in superposition. This would
make the quantum algorithm faster but also increase
the number of qubits needed. We remark also that the
distance or inner product estimation procedure can find

FIG. 5: An example of a jupyter notebook that runs the
Quantum Nearest Centroid algorithm, as well as the scikit-
learn Nearest Centroid algorithm, and prints and plots the
results.

many more applications such as matrix-vector multipli-
cations during clustering or training neural networks.

2. Runtime and Scalability

One of the main advantages of using the Nearest Cen-
troid as a basic benchmark for quantum machine learning
is that we fully understand what the quantum algorithm
does and how its runtime scales with the dimension of
the data and the size of the data set.

The quantum advantage comes from the distance es-
timation procedure which is based on the data loader
circuits. As we have described, the circuit for estimating
the distance of two d-dimensional data points has depth
2 log d. Theoretically, for an estimation of the distance
up to ε one needs to run the circuit Ns = O(1/ε2) times.
Note also, that in the future one will be able to use ampli-
tude estimation on top of this circuit in order to reduce
the overall time to O(log d/ε). The accuracy required
depends on how well-classifiable our data set is, meaning
whether most points are close to a centroid or they are
mostly distributed equidistantly from the centroids. This
number does not really depend on the dimension of the
data set and in all data sets we considered an approx-
imation to the distance up to 0.1 for most points and
0.03 for a few difficult to classify points suffices, even for
the full-scale MNIST dataset of 784 dimensions. Thus
we expect that the number of shots will not significantly
change as the problem sizes scale up.

Since the cost of calculating the circuit parameters is a
one-off cost, if we want to estimate the distance between
k centroids and n data points all of dimension d, then the
quantum circuits will need d qubits and the running time
would be of the form O(kd+nd+ kn log(d/ε)). The first
term corresponds to pre-processing the centroids, the sec-
ond term to pre-processing the new data points and the
third term to estimating the distances between each data
point and each centroid and assigning a label. The basic

8

FIG. 6: The quantum processor consists of a micro-fabricated
surface electrode ion-trap (a), which is used to trap a linear
chain of Ytterbium ions. (b) A chain of 15 ions is imaged
by collecting fluorescence using an optical microscope, where
each ion can represent a physical qubit.

classical Nearest Centroid algorithm takes time O(nkd).
One can design different classical Nearest Centroid al-
gorithms that also sample using special data structures
which will still be quadratically worse than a fully quan-
tum one, at least with respect to the error.

We note that we do not claim here that the quantum
Nearest Centroid procedure is faster than the classical
one right now or that it will be in the very near future.
Our goal is to measure the performance of the quantum
routines outlined above on real hardware and real data.
Procedures like the data loader circuits will be useful in
the future as an input to much more classically compli-
cated procedures including training neural networks or
performing Principal Component or Linear Discriminant
Analysis. An important outcome from this is the devel-
opment of noise models and error mitigation techniques
that will also help in improving and predicting the accu-
racy of the more complicated algorithms.

III. EXPERIMENT

A. Trapped ion quantum computer

Our experimental demonstration is performed on an
11-qubit trapped ion processor based on 171Yb+ ion
qubits. The device is commercially available through
IonQ’s cloud service.

The 11-qubit device is operated with automated load-
ing of a linear chain of ions (see figure 6), which is then
optically initialized with high fidelity. Computations

Rz(−π/2) • Rz(−π/2)

Rz(π/2) • Ry(π/2 − 2θ) Ry(2θ − π/2) •

FIG. 7: Circuit to implement iRBS(θ) gate

are performed using a mode-locked 355nm laser, which
drives native single-qubit-gate (SQG) and two-qubit-gate
(TQG) operations. The native TQG used is a maximally
entangling Molmer Sorensen gate.

In order to maintain consistent gate performance, cali-
brations of the trapped ion processor are automated. Ad-
ditionally, phase calibrations are performed for SQG and
TQG sets, as required for implementing computations in
queue and to ensure consistency of the gate perfomance.

1. Implementation of the circuits on the ionQ processor

The circuits we described above are built with the
RBS(θ) gates (Eq. 1). To map these gates optimally
onto the hardware we will instead use the modified gate

iRBS(θ) =

 1 0 0 0
0 cos θ −i sin θ 0
0 −i sin θ cos θ 0
0 0 0 1

 (4)

It is easy to see that the distance estimation circuit stays
unchanged. Using the fact that iRBS(θ) = exp(iθ(σx ⊗
σx+σy⊗σy)), we can decompose the gate into the circuit
shown in Fig. 7 [38]. Each CNOT gate can be imple-
mented with a maximally entangling Molmer Sorensen
gate and single qubit rotations native to IonQ hardware.

We run 4 and 8 qubit versions of the algorithm. The 4
qubit circuits have 12 TQG and the 8 qubit circuits have
30 TQG.

B. Experimental Results

We tested the algorithm with synthetic and real
datasets. On an ideal quantum computer, the state right
before measurement has non-zero amplitudes only for
states within the unary basis, |ei〉 = |2i〉, i.e. states in
which only a single bit is 1. The outcome of the ex-
periment that is of interest to us is the state |10..00〉.
To estimate the probability of this outcome, the circuit
is performed a number of times Ns and the probabil-
ity is calculated as the ratio of the number of times the
outcome is the state |10..00〉 over Ns. On a real quan-
tum computer, each circuit is run with a fixed number of
shots to recreate the density matrix probability distribu-
tion in the output as closely as possible. Typically, there
are many computational basis states other than the ones
in the ideal probability distribution that are measured.
Therefore, we have adopted two different techniques for
estimating the desired probability.

9

Sampling of points 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3

Classical NC 0 0 2 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 3 1 2 2 2 2 2 2 3 2 2 2 3 3 3 3 3 3 3 3 3 3

QNC (no mitigation) 0 0 2 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 3 1 2 2 2 2 2 2 3 2 2 1 3 3 3 3 3 3 3 3 3 3

QNC (with mitigation) 0 0 2 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 3 1 2 2 2 2 2 2 3 2 2 1 3 3 3 3 3 3 3 3 3 3

TABLE I: Comparison of labels assigned by the different classification schemes for synthetic data with Nq = 4, Nc = 4 and
Ns = 500. The labels in red show where the quantum classification differs from the classical one.

Sampling of points 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3

Classical NC 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3

QNC (no mitigation) 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 3 0 0 0 2 2 2 2 2 2 2 2 2 2 3 3 3 2 3 3 3 3 2 3

QNC (with mitigation) 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 1 0 1 2 2 2 2 2 2 2 2 2 2 3 3 3 2 3 3 3 3 2 3

TABLE II: Comparison of labels assigned by the different classification schemes for synthetic data with Nq = 8, Nc = 4 and
Ns = 1000. The labels in red show where the quantum classification differs from the classical one.

1. No error-mitigation: Measure the first qubit and
compute the probability as the ratio of the number
of times the outcome is 1 over the total number of
runs of the circuit Ns.

2. Error-mitigation: Measure all qubits and discard
all runs of the circuit with results that are not of
the form |2i〉. Compute the probability as the ra-
tio of the number of times the outcome is |10..0〉
over the total number of runs of the circuit where
a state of the form |2i〉 was measured. This simple
technique proved extremely powerful in increasing
the accuracy of the algorithm.

We are now ready to present our experimental results.
a. Synthetic data For the synthetic data, we create

datasets with k clusters (for k equal to 2 and 4) of d-
dimensional data points (for d equal to 4 and 8). This
begins with generating k random points that serve as the
“centroids” of a cluster, followed by generating n = 10
data points per centroid by adding Gaussian noise to the
“centroid” point. The distance between the centroids was
set to be a minimum of 0.3, the variance of the Gaus-
sians was set to be 0.05 and the points were distributed
within a sphere of radius 1. Therefore, there is apprecia-
ble probability of the points generated from one centroid
lying closer to the centroid of another cluster. This can
be seen as mimicking noise in real life data.

In Tables I and II we present, as an example, the data
points and the labels assigned to them by the classical
and quantum Nearest Centroid for the case of four classes
in the 4- and 8-dimensional case. The first line shows
how the points were sampled, namely the first quarter of
points were sampled starting from the centroid labelled
0, the second quarter were sampled from the centroid la-
belled 1, etc. The second row shows the labels assigned
by the classical Nearest Centroid algorithm. These are
the labels that we will benchmark against. The third and
fourth line presents the results of the quantum Nearest
Centroid algorithm without and with error mitigation.

We see in these examples, and in fact this is the be-
haviour overall, that our quantum Nearest Centroid al-
gorithm with error mitigation provides the correct labels
for 39 out of 40 4-dimensional points and for 36 out of
the 40 8-dimensional points, or an accuracy of 97.5% and
90% respectively. The quantum classification is affected
by the noise in the operations and can shift the assign-
ment non-trivially based on the accuracy in the measured
distance, as can be seen in cluster 1 in Table II. This will
be discussed in more detail in Section E.

(a)

0

1

2

3

(b)

Nq=4
Nc=2
Ns=100

Nq=4
Nc=4
Ns=500

Nq=8
Nc=2
Ns=1000

Nq=8
Nc=4
Ns=1000

0

10

20

30

C
la

ss
ifi

ca
tio

n
E

rr
or

 %

FIG. 8: Synthetic data. (a) Ratio of distance calculated from
the quantum computer vs the simulator, and (b) classification
of synthetic data for different number of clusters (Nc), qubits
(Nq) and shots (Ns) before (blue, left) and after error mit-
igation (red, right). The number of data points was 10 per
cluster. The classification error is calculated by comparing
the quantum to the classical labels for each dataset.

10

For the synthetic data, our goal was to see whether
the quantum Nearest Centroid algorithm can assign the
same labels as the classical one, even though the points
are quite close to each other. Thus our classical bench-
mark for the synthetic data is 0% classification error.
The baseline which corresponds to the accuracy of just
randomly guessing the labels is 1/k for k classes.

In Fig. 8 (b), we first show the error of the quantum
Nearest Centroid algorithm averaged over a data set of 20
or 40 data points. Here, Nc is the number of classes, Ns

is the number of shots and Nq = d is the dimension and
number of qubits used in the experiment. For each case,
there are two values (left-blue, right-red) that correspond
to the results without and with error mitigation. For 2
classes, we see that for the case of 4-dimensional data,
we achieve 100% percent accuracy even with as little as
100 shots per circuit and even without error-mitigation.
For the case of 8-dimensional data, we also achieve 100%
accuracy with error mitigation and 1000 shots. We also
performed experiments with 4 classes, and the accuracies
were 97.5% for the 4-dimensional case and 90% for the
8-dimensional case with error-mitigation. The number
of shots used is more for the higher dimensional case as
suggested by the analysis in Section E.

While trying to estimate meaningful error bars for clas-
sification accuracy would require an impractical number
of experiments (each experiment consists of running up
to 160 different circuits a 1000 times each), Fig. 8 (a)
shows the average ratio between the distance estimation
from experiment and simulation along with its error bars.
We see that the experimentally estimated distance may
actually be off by a significant factor from the theoretical
distance. However, since the error bars in the distance
estimation are quite small, and what matters for classifi-
cation is that the ratio of the distances remains accurate,
it is reasonable that we have high classification accuracy.
In section E, we will show a way to reduce the error in
the distance itself based on knowledge of the noise model
of the quantum system.

b. The IRIS dataset The IRIS data set consists of
three classes of flowers (Iris setosa, Iris virginica and Iris
versicolor) and 50 samples from each of three classes.
Each data point has four dimensions that correspond to
the length and the width of the sepals and petals, in
centimeters. This data set has been used extensively for
benchmarking classification techniques in machine learn-
ing, in particular because classifying the set is non triv-
ial. In fact, the data points can be clustered easily in two
clusters, one of the clusters contains Iris setosa, while the
other cluster contains both Iris virginica and Iris versi-
color. Thus classification techniques like Nearest Cen-
troid do not work exceptionally well without preprocess-
ing (for example linear discriminant analysis) and hence
it is a good data set to benchmark our quantum Near-
est Centroid algorithm as it is not tailor-made for the
method to work well.

(a)

0

2

4

6

(b)

Nq=4
Nc=3
Ns=100

Nq=4
Nc=3
Ns=500

Nq=4
Nc=3
Ns=1000

0

10

20

30

40

C
la

ss
ifi

ca
tio

n
E

rr
or

 %

FIG. 9: Iris data set. (a) Ratio of distance calculated from
the quantum computer vs the simulator, and (b) classification
of Iris data. There were 150 data points in total. The dashed
line shows the accuracy of classical nearest centroid algorithm.

-2 0 2 4
-1.5

-1

-0.5

0

0.5

1

1.5

-2 0 2 4
-1.5

-1

-0.5

0

0.5

1

1.5

FIG. 10: Iris data classification pictured after using principal
component analysis to reduce the dimension from 4 to 2. The
color of the boundary of the circles indicates the 3 human-
assigned labels. The color of the interior indicates the class
assigned by the quantum computer. (a) shows the classifica-
tion before error mitigation using 500 shots, and (b) shows
the classification after.

11

Fig. 9 shows the classification error for the IRIS data
set of 150 4-dimensional data points. The classical Near-
est Centroid classifies around 92.7% of the points while
our experiments with 500 shots and error mitigation
reaches 84% accuracy. Increasing the number of shots be-
yond 500 does not increase the accuracy because at this
point the experiment is dominated by systematic noise
which changes each time the system is calibrated. In the
particular run, going from 500 to 1000 shots, the number
of wrong classifications slightly increases, which just re-
flects the variability in the calibration of the system. We
also provide the ratio of the experimental vs simulated
distance estimation for these experiments.

Fig. 10 compares the classification visually before and
after error mitigation. Before error mitigation, many of
the points that lie close to midway between centroids
are mis-classified, whereas applying the mitigation moves
them to the right class.

c. The MNIST dataset The MNIST database con-
tains 60,000 training images and 10,000 test images of
handwritten digits and it is widely used as a benchmark
for classification. Each image is a 28 × 28 image i.e. a
784-dimensional point. To work with this data set we
preprocessed the images with PCA to project them into
8 dimensions. This reduces the accuracy of the algo-
rithms, both the classical and the quantum, but it allows
us to objectively benchmark the quantum algorithms and
hardware on different types of data.

(a)

0

0.5

1

1.5

2

(b)

Nq=8
Nc=2
Ns=1000

Nq=8
Nc=2
Ns=1000

Nq=8
Nc=4
Ns=1000

Nq=8
Nc=10
Ns=1000

0

10

20

30

40

C
la

ss
ifi

ca
tio

n
E

rr
or

 %

FIG. 11: MNIST data set. (a) Ratio of distance calculated
from experiment vs simulator, and (b) classification of differ-
ent down-scaled MNIST data sets. From left to right, the
data sets were (i) 0 and 1 (40 samples), (ii) 2 and 7 (40 sam-
ples), (iii) 0-3 (80 samples) and (iv) 0-9 (200 samples). The
diamonds show the accuracy of classical Nearest Centroid.

Accuracy: 79.50%
89.5%

17
10.5%

2
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0

0.0%
0

90.0%
9

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

10.0%
1

0.0%
0

4.8%
1

71.4%
15

0.0%
0

0.0%
0

4.8%
1

4.8%
1

0.0%
0

0.0%
0

14.3%
3

4.3%
1

0.0%
0

0.0%
0

65.2%
15

13.0%
3

0.0%
0

0.0%
0

0.0%
0

0.0%
0

17.4%
4

0.0%
0

0.0%
0

4.2%
1

0.0%
0

91.7%
22

0.0%
0

0.0%
0

0.0%
0

4.2%
1

0.0%
0

0.0%
0

0.0%
0

12.5%
3

0.0%
0

0.0%
0

79.2%
19

0.0%
0

0.0%
0

8.3%
2

0.0%
0

0.0%
0

0.0%
0

0.0%
0

8.7%
2

0.0%
0

0.0%
0

82.6%
19

4.3%
1

0.0%
0

4.3%
1

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

100.0%
20

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

100.0%
14

0.0%
0

0.0%
0

27.3%
6

4.5%
1

4.5%
1

0.0%
0

4.5%
1

4.5%
1

0.0%
0

13.6%
3

40.9%
9

0

1

2

3

4

5

6

7

8

9

T
ar

ge
t C

la
ss

Accuracy: 77.50%
94.7%

18
5.3%

1
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0

0.0%
0

81.8%
9

0.0%
0

0.0%
0

9.1%
1

9.1%
1

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

73.7%
14

5.3%
1

0.0%
0

5.3%
1

5.3%
1

0.0%
0

0.0%
0

10.5%
2

0.0%
0

0.0%
0

4.2%
1

62.5%
15

16.7%
4

0.0%
0

0.0%
0

0.0%
0

0.0%
0

16.7%
4

0.0%
0

0.0%
0

4.8%
1

0.0%
0

95.2%
20

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

13.6%
3

0.0%
0

0.0%
0

77.3%
17

0.0%
0

0.0%
0

9.1%
2

0.0%
0

0.0%
0

0.0%
0

0.0%
0

4.5%
1

0.0%
0

0.0%
0

86.4%
19

4.5%
1

0.0%
0

4.5%
1

0.0%
0

5.3%
1

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

94.7%
18

0.0%
0

0.0%
0

0.0%
0

5.0%
1

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

5.0%
1

80.0%
16

10.0%
2

0.0%
0

26.1%
6

4.3%
1

4.3%
1

0.0%
0

8.7%
2

4.3%
1

4.3%
1

8.7%
2

39.1%
9

0 1 2 3 4 5 6 7 8 9

Output Class

0

1

2

3

4

5

6

7

8

9

T
ar

ge
t C

la
ss

FIG. 12: Confusion matrices for MNIST classification from
classical (top) and quantum (bottom) computer with 10
classes and 200 points after error mitigation.

For our experiments with the 8-dimensional MNIST
database, we created four different data sets. The first
one has 40 samples of 0 and 1 digits only. The second
one has 40 samples of the 2 and 7 digits. The third one
has 80 samples of four different digits 0-3. The fourth
one has 200 samples of all possible digits 0-9.

In Figure 11 we see that for the first data set the quan-
tum algorithm with error mitigation gets accuracy 100%,
matching well the classical accuracy of 97.5%. For the
case of 2 vs. 7, we achieve accuracy of around 87.5%
similar to the classical algorithm. For the 4-class classifi-
cation, we also get similar accuracy to the classical algo-
rithm of around 83.75%. Most impressively, for the last
data set with all 10 different digits, we practically match
the classical accuracy of around 77.5% with error miti-
gation and 1000 shots. We also provide the ratio of the
experimental vs simulated distance estimation for these
experiments which shows high accuracy for the distance
estimation as well.

Note that this is the first time classification with 10
classes has been performed on a quantum computer with
remarkably encouraging accuracy. A quantum computer
of eight qubits was able to recognise eight out of ten

12

handwritten digits on average, same as the classical al-
gorithm, and with a time scaling which with the advent
of more qubits and faster quantum clocks may become
competitive with classical computers.

In Figure 12 we provide the confusion graph for the
classical and quantum nearest centroid algorithm, show-
ing how our quantum algorithm matches the accuracy of
the classical one.

C. Noise model and Scaling of Error Mitigation

In this section, we discuss the different sources of error
and their scaling. One part of the effective error in the
circuit can be modeled as an error that changes the state
within the unary encoding subspace during two-qubit op-
erations. This can be represented for each two qubit op-
eration as RBS(θ) → RBS(θ(1 + Γr)), where Γ is the
magnitude of the noise and r is a normally distributed
random number. For simplicity of the calculations we
can simply say that each RBS(θ) gate performs a linear
mapping for a vector (a1, a2) in the basis {e1, e2} of the
form:

(a1, a2) 7→ (cos θΓ ·a1 +sin θΓ ·a2,− sin θΓ ·a1 +cos θΓ ·a2)

such that cos θ − cos θΓ ≈ Γr and sin θ − sin θΓ ≈ −Γr.
It is not hard to calculate now that each layer of the

circuit only adds an error of at most
√

2Γ, even though
one layer can consist of up to n/2 RBS gates. To see
this, consider any layer of the distance estimation circuit,
for example, the layer on time step 3 in Fig. 3. Let
the state before this layer be denoted by a unit vector
a = (a1, a2, . . . , an) in the basis {e1, e2, . . . , en}. Then,
if we look at the difference of the output of the layer
when applying the correct RBS gates and the ones with
Γ error, we get an error vector of the form

eΓ = (Γr1a1 + Γr1a2,−Γr1a1 + Γr1a2, . . .)

If we look at the `2 norm of this vector we have

‖eΓ‖2 ≤ 2Γ2 ‖a‖2 = 2Γ2

Since the number of layers is logarithmic in the number
of qubits, this implies that the overall accuracy to leading
order at the end is (1 − Γ)O(log(n)). This is one of the
most interesting characteristics of our quantum circuits,
whose architecture and shallow depth enables accurate
calculations even with noisy gates. This implies that, for
example, for 1024-dimensional data and a desired error
in the distance estimation of 10−2 we need the fidelity of
the XX gates to be of the order of 10−3 and not 10−5,
which would have been the case if the error grew with
the number of gates.

Next, we also expect some level of depolarizing error
in the experiment. Measurements in the computational
basis can be modeled by a general output density matrix

of the form

ρd = p

n∑
i=0

|aiΓ|2 |ei〉 〈ei|+
(1− p)

2n
I2n , (5)

where aiΓ are the amplitudes of the quantum state af-
ter the error described previously is incorporated. The
depolarizing error can be mitigated by discarding the his-
togram states that result in states that are not |ei〉 〈ei|.
After this post-selection, the resulting density matrix is

ρ =
1

N

n∑
i=1

(
p|aiΓ|2 +

(1− p)
2n

)
|ei〉 〈ei| (6)

Here p = fm, where f is the fidelity of two-qubit
gates and m is the number of two-qubit gates. For
our circuits, m = 4.5n − 6. The normalization factor,

N =
∑n

i=1

(
p|aiΓ|2+ (1−p)

2n

)
. Therefore, the vector over-

lap measured from the post-selected density matrix is

c =
p|a1Γ|2 + (1−p)

2n∑n
i=1

(
p|aiΓ|2 + (1−p)

2n

)
=

|a1Γ|2 + (1−p)
2np∑n

i=1

(
|aiΓ|2 + (1−p)

2np

)
=
|a1Γ|2 + (1−p)

2np

1 + (1−p)n
2np

(7)

For effective error mitigation, we need 2np � 1 =⇒
2nf4.5n−6 � 1. When n � 1, this gives 2f4.5 � 1 =⇒
f � 1

21/4.5 = 85.8%. Thus, we find a threshold for the

fidelity over which c → |a1Γ|2 as n increases. Since the
depolarizing error is much lower than this value, this im-
plies post selection will become more effective at remov-
ing depolarizing error as the problem size increases.

To test this error model, we notice that the experi-
mentally measured value of the overlap, cexp should be
proportional to |a1Γ|2 ∝ csim. We plot cexp vs csim in
Fig. 13 for the synthetic dataset with Nq = 8, Nc = 4
and Ns = 1000 and find that the data fits well to straight
lines. Using Eq. 6, we know that the slope of the line
before error mitigation should be fm. From this, we can
estimate the value for f as 95.85% which is remarkably
close to the expected two qubit gate fidelity of 96%.

The fact that the data can be fit to a straight line can
be straightforwardly used to obtain a better estimate of
the distance. In this work, we have focused on classifica-
tion accuracy which is robust to errors in the distance as
long as they occur in the distances measured to all cen-
troids. Nevertheless, there may be applications in which
the distance (or the inner product) needs to be measured
accurately, for example when we want to perform matrix
vector multiplications. Note that classification is based
on which centroid is nearest to the data point and thus if

13

0 0.2 0.4 0.6 0.8 1

csim

0

0.2

0.4

0.6

0.8
c ex

p
No mitigation
y = 0.28*x +0.017
After mitigation
y = 0.59*x +0.048

FIG. 13: The experimentally estimated value of c vs its value
from simulation. This data corresponds to the synthetic
dataset with Nq = 4, Nd = 8 and Ns = 1000.

all distances are corrected in the same way, this will not
change the classification label.

The number of samples needed to get sufficient sam-
ples from the ideal density matrix after performing the
post-selection to remove depolarizing error increases ex-
ponentially with the number of qubits n. However, with
the coming generation of ion trap quantum computers,
this error will be low and thus the coefficient of the expo-
nential increase will be extremely small. The main source
of remaining error will be the first one that perturbs the
state within the encoding subspace but this grows only
logarithmically with n.

Another source of error is of statistical origin. In future
experiments with much higher fidelity gates, the approx-
imation to the distance will become better with the num-
ber of runs and scale as 1/

√
NS . Increasing the number

of measurements is thus important for those points that
are almost equidistant between one or more clusters, but
is not that important for points that are clearly closer to
one centroid than another. One could imagine an adap-
tive schedule of runs where initially a smaller number of
runs is performed with the same data point and each cen-
troid and then depending on whether the nearest centroid
can be clearly inferred or not, more runs are performed
with respect to the centroids that were near the point.
We haven’t performed such optimizations here since the
number of runs remains very small. As we have said,
with the advent of the next generation of quantum hard-
ware, one can apply amplitude estimation procedures to
reduce the number of samples needed.

IV. DISCUSSION

We presented an implementation of an end-to-end
quantum application in machine learning. We performed

classification of synthetic and real data using QCWare’s
quantum Nearest Centroid algorithm and IonQ’s 11-
qubit quantum hardware. The results are extremely
promising with accuracies that reach 100% for many
cases with synthetic data and match classical accuracies
for the real data sets. In particular, we note that we man-
aged to perform a classification between all 10 different
digits of an MNIST data set down-scaled to 8-dimensions
with accuracy matching the classical nearest centroid one
for the same data set. To our knowledge such results have
not been previously achieved on any quantum hardware
and using any quantum classification algorithm.

We also argue for the scalability of our approach and
its applicability for NISQ machines, based on the fact
that the algorithm uses shallow quantum circuits that
are provably tolerant to certain levels of noise. Further,
the particular application of classification is amenable to
computations with limited accuracy since it only needs a
comparison of distances between different centroids but
not finding all distances to high accuracy.

For our experiments, we used unary encoding for the
data points, namely using one qubit per feature of the
data points. While this increases the number of qubits
needed to the same as in the quantum variational meth-
ods, it also allows for effective error mitigation and in
particular has the advantage that the error grows only as
the depth of the circuit, which is logarithmic in the num-
ber of qubits and not as the number of qubits or gates.
This allows us to be optimistic for applying this algo-
rithm to the next generation of quantum computers with
a much higher number of qubits. With 99.9% fidelity of
IonQ’s newest 32 qubit system, we are confident we will
match classical accuracy in higher-dimensional datasets
without error correction.

One of the useful outcomes of this work is also the de-
velopment of a model of how experimental error affects
algorithmic accuracy. We hope that this will spur fur-
ther research on algorithmic performance on real hard-
ware encouraging the development of practical quantum
algorithms and benchmarks.

The question of whether quantum machine learning
can provide real world applications is still wide open but
we believe our work brings the prospect closer to real-
ity by showing how joint development of algorithms and
hardware can push the state-of-the-art of what is possible
on quantum computers.

V. ACKNOWLEDGEMENTS

This work is a collaboration between QCWare and
IonQ. We acknowledge helpful discussions with Peter
McMahon.

[1] S. Debnath, N. M. Linke, C. Figgatt, K. A. Landsman,
K. Wright, and C. Monroe. Demonstration of a small

programmable quantum computer with atomic qubits.

14

Nature, 536(7614):63–66, 2016.
[2] Thomas Monz, Daniel Nigg, Esteban A. Martinez,

Matthias F. Brandl, Philipp Schindler, Richard Rines,
Shannon X. Wang, Isaac L. Chuang, and Rainer Blatt.
Realization of a scalable shor algorithm. Science,
351(6277):1068–1070, 2016.

[3] R. Barends, J. Kelly, A. Megrant, A. Veitia,
D. Sank, E. Jeffrey, T. C. White, J. Mutus, A. G.
Fowler, B. Campbell, Y. Chen, Z. Chen, B. Chiaro,
A. Dunsworth, C. Neill, P. O’Malley, P. Roushan,
A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cle-
land, and John M. Martinis. Superconducting quantum
circuits at the surface code threshold for fault tolerance.
Nature, 508(7497):500–503, 2014.

[4] A. D. Córcoles, Easwar Magesan, Srikanth J. Srinivasan,
Andrew W. Cross, M. Steffen, Jay M. Gambetta, and
Jerry M. Chow. Demonstration of a quantum error detec-
tion code using a square lattice of four superconducting
qubits. Nature Communications, 6(1):6979, 2015.

[5] Norbert M. Linke, Dmitri Maslov, Martin Roetteler,
Shantanu Debnath, Caroline Figgatt, Kevin A. Lands-
man, Kenneth Wright, and Christopher Monroe. Exper-
imental comparison of two quantum computing architec-
tures. Proceedings of the National Academy of Sciences,
114(13):3305–3310, 2017.

[6] Prakash Murali, Norbert Matthias Linke, Margaret
Martonosi, Ali Javadi Abhari, Nhung Hong Nguyen, and
Cinthia Huerta Alderete. Full-stack, real-system quan-
tum computer studies: Architectural comparisons and
design insights. In Proceedings of the 46th International
Symposium on Computer Architecture, ISCA ’19, page
527, New York, NY, USA, 2019. Association for Com-
puting Machinery.

[7] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon,
Joseph C. Bardin, Rami Barends, Rupak Biswas, Sergio
Boixo, Fernando G. S. L. Brandao, David A. Buell, Brian
Burkett, Yu Chen, Zijun Chen, Ben Chiaro, Roberto
Collins, William Courtney, Andrew Dunsworth, Ed-
ward Farhi, Brooks Foxen, Austin Fowler, Craig Gidney,
Marissa Giustina, Rob Graff, Keith Guerin, Steve Habeg-
ger, Matthew P. Harrigan, Michael J. Hartmann, Alan
Ho, Markus Hoffmann, Trent Huang, Travis S. Humble,
Sergei V. Isakov, Evan Jeffrey, Zhang Jiang, Dvir Kafri,
Kostyantyn Kechedzhi, Julian Kelly, Paul V. Klimov,
Sergey Knysh, Alexander Korotkov, Fedor Kostritsa,
David Landhuis, Mike Lindmark, Erik Lucero, Dmitry
Lyakh, Salvatore Mandrà, Jarrod R. McClean, Matthew
McEwen, Anthony Megrant, Xiao Mi, Kristel Michielsen,
Masoud Mohseni, Josh Mutus, Ofer Naaman, Matthew
Neeley, Charles Neill, Murphy Yuezhen Niu, Eric Os-
tby, Andre Petukhov, John C. Platt, Chris Quintana,
Eleanor G. Rieffel, Pedram Roushan, Nicholas C. Ru-
bin, Daniel Sank, Kevin J. Satzinger, Vadim Smelyan-
skiy, Kevin J. Sung, Matthew D. Trevithick, Amit
Vainsencher, Benjamin Villalonga, Theodore White,
Z. Jamie Yao, Ping Yeh, Adam Zalcman, Hartmut
Neven, and John M. Martinis. Quantum supremacy us-
ing a programmable superconducting processor. Nature,
574(7779):505–510, 2019.

[8] Yohichi Suzuki, Shumpei Uno, Rudy Raymond, Tomoki
Tanaka, Tamiya Onodera, and Naoki Yamamoto. Am-
plitude estimation without phase estimation. Quantum
Information Processing, 2020.

[9] Tomoki Tanaka, Yohichi Suzuki, Shumpei Uno, Rudy

Raymond, Tamiya Onodera, and Naoki Yamamoto. Am-
plitude estimation via maximum likelihood on noisy
quantum computer. arXiv:2006.16223, 2020.

[10] Dmitry Grinko, Julien Gacon, Christa Zoufal, and Ste-
fan Woerner. Iterative quantum amplitude estimation.
arXiv:1912.05559, 2019.

[11] Scott Aaronson and Patrick Rall. Quantum approximate
counting, simplified. SIAM Symposium on Simplicity in
Algorithms, 2020.

[12] Adam Bouland, Wim van Dam, Hamed Joorati, Iordanis
Kerenidis, and Anupam Prakash. Prospects and chal-
lenges of quantum finance. arXiv:2011.06492, 2020.

[13] Craig Gidney and Martin Eker̊a. How to factor 2048 bit
RSA integers in 8 hours using 20 million noisy qubits.
arXiv:1905.09749, 2019.

[14] Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost.
Quantum principal component analysis. Nature Physics,
10(9):631–633, July 2014.

[15] Iordanis Kerenidis and Anupam Prakash. Quantum Rec-
ommendation Systems. 67:49:1–49:21, 2017.

[16] Iordanis Kerenidis, Jonas Landman, Alessandro Luongo,
and Anupam Prakash. q-means: A quantum algo-
rithm for unsupervised machine learning. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E. Fox,
and R. Garnett, editors, Advances in Neural Information
Processing Systems 32, pages 4136–4146. Curran Asso-
ciates, Inc., 2019.

[17] Tongyang Li, Shouvanik Chakrabarti, and Xiaodi Wu.
Sublinear quantum algorithms for training linear and
kernel-based classifiers. In Kamalika Chaudhuri and Rus-
lan Salakhutdinov, editors, Proceedings of the 36th Inter-
national Conference on Machine Learning, volume 97 of
Proceedings of Machine Learning Research, pages 3815–
3824, Long Beach, California, USA, 09–15 Jun 2019.
PMLR.

[18] Hyeonwoo Noh, Tackgeun You, Jonghwan Mun, and Bo-
hyung Han. Regularizing deep neural networks by noise:
Its interpretation and optimization. NeurIPS, 2017.

[19] Ewin Tang. A quantum-inspired classical algorithm for
recommendation systems. In Proceedings of the 51st An-
nual ACM SIGACT Symposium on Theory of Computing
- STOC 2019. ACM Press, 2019.

[20] Edward Farhi and Hartmut Neven. Classification with
quantum neural networks on near term processors.
arXiv:1802.06002, 2018.

[21] Iris Cong, Soonwon Choi, and Mikhail D. Lukin. Quan-
tum convolutional neural networks. Nature Physics 15,
2019.

[22] M. Cerezo, Akira Sone, Tyler Volkoff, Lukasz Cin-
cio, and Patrick J. Coles. Cost-function-dependent
barren plateaus in shallow quantum neural networks.
arXiv:2001.00550, 2020.

[23] M Cerezo, A Sone, L Cincio, and P Coles. Barren plateau
issues for variational quantum-classical algorithms. Bul-
letin of the American Physical Society 65, 2020.

[24] K Sharma, M Cerezo, L Cincio, and PJ Coles. Train-
ability of dissipative perceptron-based quantum neural
networks. arXiv preprint arXiv:2005.12458, 2020.

[25] Hector Ivan Garcıa-Hernandez, Raymundo Torres-Ruiz,
and Guo-Hua Sun. Image classification via quantum ma-
chine learning. arXiv:2011.02831, 2020.

[26] Kouhei Nakaji and Naoki Yamamoto. Quantum semi-
supervised generative adversarial network for enhanced
data classification. arXiv:2010.13727, 2020.

15

[27] William Cappelletti, Rebecca Erbanni, and Joaqúın
Keller. Polyadic quantum classifier. arXiv:2007.14044,
2020.

[28] Saurabh Kumar, Siddharth Dangwal, and Debanjan
Bhowmik. Supervised learning using a dressed quan-
tum network with ”super compressed encoding”: Al-
gorithm and quantum-hardware-based implementation.
arXiv:2007.10242, 2020.

[29] Vojtech Havlicek, Antonio D. Córcoles, Kristan Temme,
Aram W. Harrow, Abhinav Kandala, Jerry M. Chow,
and Jay M. Gambetta. Supervised learning with quan-
tum enhanced feature spaces. Nature volume 567,
arXiv:1804.11326, 2018.

[30] Edward Grant, Marcello Benedetti, Shuxiang Cao, An-
drew Hallam, Joshua Lockhart, Vid Stojevic, Andrew G.
Green, and Simone Severini. Hierarchical quantum clas-
sifiers. npj Quantum Information 4, arXiv:1804.03680,
2018.

[31] Iordanis Kerenidis. A method for loading classical data
into quantum states for applications in machine learn-
ing and optimization. U.S. Patent Application No.
16/986,553 and 16/987,235, 2020.

[32] K. Wright et al. N. Grzesiak, R. Blümel. Efficient arbi-
trary simultaneously entangling gates on a trapped-ion
quantum computer. Nat Commun, 11.

[33] Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone.

Architectures for a quantum random access memory.
Phys. Rev. A 78, 052310, 2008.

[34] Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone.
Quantum random access memory. Phys. Rev. Lett. 100,
160501, 2008.

[35] Srinivasan Arunachalam, Vlad Gheorghiu, Tomas
Jochym-O’Connor, Michele Mosca, and Priyaa Varshinee
Srinivasan. On the robustness of bucket brigade quan-
tum ram. New Journal of Physics, Vol. 17, No. 12, Pp.
123010, 2020.

[36] Sergi Ramos-Calderer, Adrián Pérez-Salinas, Diego
Garćıa-Mart́ın, Carlos Bravo-Prieto, Jorge Cortada,
Jordi Planagumà, and José I. Latorre. Quantum unary
approach to option pricing. arXiv:1912.01618, 2019.

[37] Diogo Cruz, Romain Fournier, Fabien Gremion, Alix
Jeannerot, Kenichi Komagata, Tara Tosic, Jarla Thies-
brummel, Chun Lam Chan, Nicolas Macris, Marc-André
Dupertuis, and Clément Javerzac-Galy. Efficient quan-
tum algorithms for ghz and w states, and implementation
on the ibm quantum computer. Adv. Quantum Technol.
1900015, 2019.

[38] Farrokh Vatan and Colin Williams. Optimal quan-
tum circuits for general two-qubit gates. Phys. Rev. A,
69:032315, Mar 2004.

	I Introduction
	II Algorithm and Software
	A Data loaders and distance estimation
	B The Quantum Nearest Centroid classifier
	1 Algorithm and software development
	2 Runtime and Scalability

	III Experiment
	A Trapped ion quantum computer
	1 Implementation of the circuits on the ionQ processor

	B Experimental Results
	C Noise model and Scaling of Error Mitigation

	IV Discussion
	V Acknowledgements
	 References

