Per-COVID-19: A Benchmark Dataset for COVID-19 Percentage Estimation from CT-Scans - Archive ouverte HAL
Article Dans Une Revue Journal of Imaging Année : 2021

Per-COVID-19: A Benchmark Dataset for COVID-19 Percentage Estimation from CT-Scans

Résumé

COVID-19 infection recognition is a very important step in the fight against the COVID-19 pandemic. In fact, many methods have been used to recognize COVID-19 infection including Reverse Transcription Polymerase Chain Reaction (RT-PCR), X-ray scan, and Computed Tomography scan (CT- scan). In addition to the recognition of the COVID-19 infection, CT scans can provide more important information about the evolution of this disease and its severity. With the extensive number of COVID-19 infections, estimating the COVID-19 percentage can help the intensive care to free up the resuscitation beds for the critical cases and follow other protocol for less severity cases. In this paper, we introduce COVID-19 percentage estimation dataset from CT-scans, where the labeling process was accomplished by two expert radiologists. Moreover, we evaluate the performance of three Convolutional Neural Network (CNN) architectures: ResneXt-50, Densenet-161, and Inception-v3. For the three CNN architectures, we use two loss functions: MSE and Dynamic Huber. In addition, two pretrained scenarios are investigated (ImageNet pretrained models and pretrained models using X-ray data). The evaluated approaches achieved promising results on the estimation of COVID-19 infection. Inception-v3 using Dynamic Huber loss function and pretrained models using X-ray data achieved the best performance for slice-level results: 0.9365, 5.10, and 9.25 for Pearson Correlation coefficient (PC), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE), respectively. On the other hand, the same approach achieved 0.9603, 4.01, and 6.79 for PCsubj, MAEsubj, and RMSEsubj, respectively, for subject-level results. These results prove that using CNN architectures can provide accurate and fast solution to estimate the COVID-19 infection percentage for monitoring the evolution of the patient state.
Fichier principal
Vignette du fichier
ABDENOUR_HADID_Journal_of_Imaging_2021.pdf (1.02 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Licence

Dates et versions

hal-03429748 , version 1 (12-06-2024)

Licence

Identifiants

Citer

Fares Bougourzi, Cosimo Distante, Abdelkrim Ouafi, Fadi Dornaika, Abdenour Hadid, et al.. Per-COVID-19: A Benchmark Dataset for COVID-19 Percentage Estimation from CT-Scans. Journal of Imaging, 2021, 7 (9), pp.189. ⟨10.3390/jimaging7090189⟩. ⟨hal-03429748⟩
49 Consultations
23 Téléchargements

Altmetric

Partager

More