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Abstract: COVID-19 infection recognition is a very important step in the fight against the COVID-19
pandemic. In fact, many methods have been used to recognize COVID-19 infection including Reverse
Transcription Polymerase Chain Reaction (RT-PCR), X-ray scan, and Computed Tomography scan
(CT- scan). In addition to the recognition of the COVID-19 infection, CT scans can provide more
important information about the evolution of this disease and its severity. With the extensive number
of COVID-19 infections, estimating the COVID-19 percentage can help the intensive care to free up the
resuscitation beds for the critical cases and follow other protocol for less severity cases. In this paper,
we introduce COVID-19 percentage estimation dataset from CT-scans, where the labeling process
was accomplished by two expert radiologists. Moreover, we evaluate the performance of three
Convolutional Neural Network (CNN) architectures: ResneXt-50, Densenet-161, and Inception-v3.
For the three CNN architectures, we use two loss functions: MSE and Dynamic Huber. In addition,
two pretrained scenarios are investigated (ImageNet pretrained models and pretrained models using
X-ray data). The evaluated approaches achieved promising results on the estimation of COVID-19
infection. Inception-v3 using Dynamic Huber loss function and pretrained models using X-ray data
achieved the best performance for slice-level results: 0.9365, 5.10, and 9.25 for Pearson Correlation
coefficient (PC), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE), respectively.
On the other hand, the same approach achieved 0.9603, 4.01, and 6.79 for PCsubj, MAEsubj, and
RMSEsubj, respectively, for subject-level results. These results prove that using CNN architectures
can provide accurate and fast solution to estimate the COVID-19 infection percentage for monitoring
the evolution of the patient state.

Keywords: COVID-19; deep learning; convolutional neural network; CT-scans; dataset generation

1. Introduction

Since the end of 2019, the World has faced a health crisis because of the COVID-19
pandemic. The crisis has influenced many aspects of human life. To save the infected
persons’ lives and stop the spread of COVID-19, many methods have been used to rec-
ognize the infected persons. These methods include Reverse Transcription Polymerase
Chain Reaction (RT-PCR) [1], X-ray scan [2–4], and CT-scan [5,6]. Despite the fact that
the RT-PCR test is considered as the global standard method for COVID-19 diagnosis,
this method has many downsides [7,8]. In detail, the RT-PCR test is time-consuming,
expensive, and has a considerable False-Negative Rate [1]. Using X-ray scan and CT-scan
methods can replace RT-PCR test and give an efficient result in both time and accuracy
[2,8]. However, both of these methods need an expert radiologist to identify COVID-19
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infection. Artificial Intelligence (AI) can provide the right solution to make this process
automatic and limit the need of the radiologist to recognize the COVID-19 infection from
these medical imaging. Indeed, computer vision and machine learning communities have
proposed many algorithms and frameworks which have proved their efficiency on this
task. Especially by using deep leaning methods which already have proved their efficiency
on different computer vision tasks [9] including medical imaging tasks [10,11].

Compared with the other two aforementioned diagnosis methods, the CT scan method
has many advantages, as shown in Table 1. In addition to the use of CT scans to recognize
COVID-19 infection, they can be used for other important tasks, which include quantifying
the infection and monitoring the evolution of the disease, which can help with treatment
and save the patient’s life [12]. Moreover, the evolution stage can be recognized, where
the typical signs of COVID-19 infection could be ground-glass opacity (GGO) in the early
stage, and pulmonary consolidation in the late stage [7,8]. According to the estimated
COVID-19 infection percentage from the CT-scans, the patient state can be classified into
Normal (0%), Minimal (<10%), Moderate (10–25%), Extent (25–50%), Severe (50–75%), and
Critical (>75%) [13].

Table 1. COVID-19 recognition methods with pros and cons for each method.

COVID-19 Recognition Method Pros Cons

RT-PCR The most used method
Requires specific equipment, Time-
consuming, Expensive, Consider-
able False-Negative Rate

X-ray scans Low cost, Available in most Hospi-
tals, fast acquisition time Require an experienced Radiologist

CT scans

Available in most Hospitals, Very ac-
curate recognition, Can be used for
monitoring the evolution of the in-
fection, Useful for Infection Severity
Prediction

Require an experienced Radiologist,
Expensive, Medium acquisition time

Most of the state-of-the art methods have been concentrating on the recognition of
COVID-19 from the CT scans or segmentation of the infected regions. Despite the huge
efforts that have been made, the state-of-the-art methods have not provided many helpful
tools to monitor the patient state, the evolution of the infection, or the response of patient
to the treatment, which can play a crucial role in saving the patient’s life. In this paper,
we propose a fully automatic approach to evaluate the evolution of COVID-19 infection
from the CT scans as regression task which can provide a richer information about the
COVID-19 infection evolution. The estimation of COVID-19 percentage can help intensive
care workers to identify the patients that need urgent care, especially the critical and
severe cases. With the extensive number of COVID-19 infections, estimating the COVID-19
percentage can help intensive care workers free up resuscitation beds for the critical cases
and follow other protocol for less severe cases.

Unlike the mainstream that dealt with COVID-19 recognition and segmentation,
this paper addresses the estimation of COVID-19 infection percentage. To this end, we
constructed the Per-COVID-19 dataset, then we used it to evaluate the performance of
three CNN architectures with two loss functions and two pretrained models scenarios.
In summary, the main contributions of this paper are as follows:

• We introduce the Per-COVID-19 dataset for estimating the COVID-19 infection per-
centage for both slice-level and patient-level. The constructed dataset consists of 183
CT scans with the corresponding slice-level COVID-19 infection percentage which
were estimated by two expert radiologists. To the best of our knowledge, our work
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is the first to propose a finer granularity of COVID-19 virus presence and solve a
challenging task related to exact estimation of COVID-19 infection percentage.

• In order to test some state-of-the art methods, we evaluated the performance of three
CNN architectures: ResneXt-50, Densenet-161, and Inception-v3. For the three CNN
architectures, we use two loss functions: Mean Squared Error (MSE) and Dynamic
Huber loss. In addition, two pretrained scenarios are investigated. In the first sce-
nario, the pretrained models on ImageNet are used. To study the influence of using
pretrained models on medical imaging task, we use the pretrained models on X-ray
images.

• We make our database and codes publicly available to encourage other researchers
to use it as a benchmark for their studies https://github.com/faresbougourzi/Per-
COVID-19 (last accessed on 4 August 2021).

2. Related Works

The state-of-the-Art methods using CT scans can be classified into two main tasks: COVID-
19 recognition [5,6,14–16] and COVID-19 segmentation [7,8,17,18]. In [19], Zheng, C. et al.
proposed the DeCoVNet approach, which is based on 3D deep convolutional neural Network
to Detect COVID-19 (DeCoVNet) from CT volumes. The input to DeCoVNet is CT volume,
and its 3D lung mask was generated by using pretrained UNet [20]. Their proposed DeCoV-
Net architecture has three parts: vanilla 3D convolution, 3D residual blocks (ResBlocks), and
progressive classifier (ProClf). He, K. et al. proposed a multi-task multi-instance deep network
(M2UNet) to assess the severity of COVID-19 patients [21]. Their proposed approach classifies
the volumetric CT-scans into two classes of severity: severe or non-severe. Their M2UNet
approach consists of a patch-level encoder, a segmentation subnetwork for lung lobe segmen-
tation, and a classification subnetwork for severity assessment. In [22], Yao, Q. et al. proposed
the NormNet architecture, which is a voxel-level anomaly modeling network, to distinguish
healthy tissues from the COVID-19 lesion in the thorax area. Paulo. L. et al. investigated
transfer learning and hyperparameter optimization techniques to improve the computer-aided
diagnosis for COVID-19 recognition sensitivity [15]. To this end, they tested different data
preprocessing and augmentation techniques. In addition, four CNN architectures were used
and four hyperparameters were optimized for each CNN architecture.

Zhao, X.et al. proposed a dilated dual-attention U-Net (D2A U-Net) approach for
COVID-19 lesion segmentation in CT slices based on dilated convolution and a novel
dual-attention mechanism to address the issues above [7]. In [17], Alessandro. S. et al.
proposed a customized ENET (C-ENET) approach for COVID-19 infection segmentation.
Their proposed C-ENET approach proved its efficiency in public datasets compared with
UNET [20] and ERFNET [23] segmentation architectures. To deal with the limitation of
the training data for segmenting COVID-19 infection, Athanasios. V. et al. introduced the
few-shot learning (FSL) concept of network model training using a very small number
of samples [18]. They explored the efficiency of few-shot learning in U-Net architectures,
allowing for a dynamic fine-tuning of the network weights as new few samples are being
fed into the UNet. Experimental results indicate improvement in the segmentation accuracy
of identifying COVID-19 infected regions.

The main limitation of the state-of-the-art works is that they have been concentrating
on the recognition and segmentation of COVID-19 infection. However, more information
about the disease evolution and severity could be inferred from the CT scans. On the other
hand, the available datasets are very limited, especially for the segmentation and severity
tasks. Table 2 shows some of the available Segmentation datasets. From this table, we
notice that these datasets were contrasted with a small number of CT scans and slices. This
is because the time and effort required for the labeling process is very large, with most
radiologists having very little time, especially during this pandemic. In this work, we have
created a dataset for estimating the percentage of COVID-19 infections that requires less
time and effort for the labeling process.

https://github.com/faresbougourzi/Per-COVID-19
https://github.com/faresbougourzi/Per-COVID-19
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Table 2. COVID-19 segmentation databases.

Database # CT-Scan # Slices

COVID-19 CT segmentation dataset [24]
March 2020 40 CT-scans 100 slices

Segmentation dataset nr. 2 [24] April 2020 9 CT-scans Total of 829 slices from which 373
infected slices

MOSMEDDATA Segmentation [25] May
2020

50 (the 10th slice was kept from
each CT-scan) 50

COVID-19-CT-Seg-Benchmark dataset [26]
April 2021 20 COVID-19 CT-scans Total: 1800 slices with 300 in-

fected slices

The proposed dataset 183 CT-scans

3986 labelled slices, where
COVID-19 Infection percentage
were estimated by two expert
Radiologists

3. Materials and Methods
3.1. Per-COVID-19 Dataset

Our Per-COVID-19 database consists of 183 CT scans that were confirmed to have
COVID-19 infection. Figure 1 shows the histogram of the infection percentage per case.
The patients were from both genders and aged between 27 to 70 years old. Each volumetric
CT scan of the Per-COVID-19 database was taken from a different patient, so the number
of CT scans equals to the number of patients. The diagnosis of COVID-19 infection is
based on positive reverse transcription polymerase chain reaction (RT-PCR) and CT scan
manifestations identified by two experienced thoracic radiologists. The CT scans were
collected from two hospitals: Hakim Saidane Biskra and Ziouch Mohamed Tolga (Algeria)
from June to December 2020. Each CT scan consists of 40–70 slices. Table 3 summarizes the
number of CT-scans and the used recording settings and device for each hospital. The two
Radiologists estimated COVID-19 infection percentage based on the area of infected lungs
over the overall size of the lungs. From each CT scan, the radiologists picked the slices that
contain signs of COVID-19 infection and the ones that do not contain any COVID-19 signs.

Table 3. Per-COVID-19 dataset construction.

Hospital Hakim Saidane Biskra Ziouch Mohamed Tolga

Number of CT-scans 150 33
Device Scanner Hitachi ECLOS CT-Scanner Toshiba Alexion CT-Scanner
Slice Thickness 5 mm 3 mm

In the proposed dataset, we kept the slices that have diagnosis agreement of the two
radiologists. In summary, from each CT-scan, we can have between 2 and 45 typical slice
images (these slices have close estimation of COVID-19 infection percentage from both
radiologists). Figure 2 shows the histogram of number of CT-scans over the number of
CT slices. Figure 3 shows examples of slices images with their corresponding COVID-19
infection percentage.

To evaluate different machine learning methods, we divided the database Per-COVID-
19 into five patient-independent folds, with each patient slice contained in only one fold.
Figure 4 shows the distribution of the slices of the dataset and the fold slices over the per-
centage of COVID-19 infections, where the dataset and the fold slices have an almost similar
distribution. The goal of using the Patient-Independent evaluation protocol is to test the
performance of the CNN architectures for slices from new patients not seen in the training
phase. In total, there are 3986 labeled slices with the corresponding COVID-19 infection per-
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centage. These slices were converted to PNG format and the lung regions were then manu-
ally cropped. The dataset is available at https://github.com/faresbougourzi/Per-Covid-19
(accessed on 4 August 2021), with labels available in the file ‘Database_new.xlsx’. The
columns represent the image name, percentage of COVID-19 infection, fold split number,
and subject ID.

Figure 1. Histogram of the slices average infection percentage per case in the proposed Per-COVID-19
database.

Figure 2. Histogram of slices number per patient in the proposed Per-COVID-19 database.

https://github.com/faresbougourzi/ Per-Covid -19
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Figure 3. CT scan images examples which have the COVID-19 infection percentages of 0%, 5%, 18%,
40%, 70%, and 80%, respectively. These slices are classified as Normal, Minimal (<10%), Moderate
(10–25%), Extent (25–50%), Severe (50–75%), and Critical (>75%), respectively.

(a)

Figure 4. Cont.
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(b)

(c)

(d)

Figure 4. Cont.
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(e)

(f)

Figure 4. (a) Per-COVID-19 Dataset, (b) Fold1. (c) Fold2, (d) Fold3. (e) Fold4, and (f) Fold5. Histogram
of COVID-19 infection percentage per slice for the dataset and the five folds.

3.2. Methods
Loss Functions

In our experiments, we used two loss functions: Mean Squared Error (MSE) and Dy-
namic Huber loss. The loss functions are defined for N batch size, and X = (x1, x2, . . . , xN)
are the ground-truth percentages and X̂ = (x̂1, x̂2, . . . , ˆxN) are their corresponding esti-
mated percentages.

MSE is sensitive towards outliers. For N predictions, MSE loss function is defined by

LMSE =
1
N

N

∑
i=1

(xi − x̂i)
2 (1)

on the other hand, the Huber loss function is less sensitive to outliers in data than L2 loss
function. For N training batch size images, the Huber loss function is defined by [27]:

LHuber =
1
N

N

∑
i=1

zi (2)

where N is the batch size and zi is defined by

zi =

{
0.5 (xi − x̂i)

2, i f |xi − x̂i| ≤ β

β |xi − x̂i| − 0.5 β2, otherwise
(3)
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where β is a controlling hyperparameter. In our experiments, β decreases from 15 to 1
during the training.

3.3. Evaluation Metrics

To evaluate the performance of the state-of-the-art methods, we use slice-level metrics
which are Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Pearson
Correlation coefficient (PC), which are defined in Equations (4)–(6), respectively.

MAE =
1
n

n

∑
i=1
|yi − ŷi| (4)

RMSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (5)

PC =
∑n

i=1 (yi − yi) (ŷi − ŷi)√
∑n

i=1(yi − yi)2
√

∑n
i=1(ŷi − ŷi)2

(6)

where Y = (y1, y2, . . . , yn) are the ground-truth COVID-19 percentages of the testing
data which consists of n slices and Ŷ = (ŷ1, ŷ2, . . . , ŷn) are their corresponding estimated
percentages. For Equation (6), yi and ŷi are the means of the ground-truth percentages and
the estimated ones, respectively.

In addition, we used subject-level metrics MAEsubj, RMSEsubj, and PCsubj, which are
defined in Equations (7)–(9), respectively.

MAEsubj =
1
s

s

∑
i=1
|ysi − ŷsi | (7)

RMSEsubj =
1
s

s

∑
i=1

(ysi − ŷsi )
2 (8)

PCsubj =
∑s

i=1 (ysi − ysi ) (ŷsi − ŷsi )√
∑s

i=1(ysi − ysi)
2
√

∑s
i=1(ŷsi − ŷsi )

2
(9)

where Ys = (ys1 , ys2 , ..., ysn) are the ground-truth means of COVID-19 percentages of each
patient’ slices from the testing data and Ŷs = ( ˆys1 , ˆys2 , ..., ŷss) are their corresponding
estimated patient-level percentages (means of patient’ slices percentages). For Equation (9),
ysi and ŷsi are the means of the ground-truth patient percentages and the estimated ones,
respectively.

MAE and RMSE are error indicators where the smaller values indicates better perfor-
mance. From other hand, PC is a statistic measurement of linear correlation between two
variables Y and Ŷ. A value of 1 means that there is a total positive linear correlation and 0
indicates no linear correlation.

4. Results

To train and test the CNN architectures (ResneXt-50, DenseNet-161, and Inception-v3),
we used the Pytorch [28] library, and a SGD optimizer with momentum equal to 0.9 is used
during the training phase. All experiments were carried out on PC with 64 GB Ram and
NVIDIA GPU Device Geforce TITAN RTX 24 GB (National Research Council (CNR-ISASI)
of Italy, 73100 Lecce, Italy). Each CNN architecture was trained for 30 epochs with initial
learning rate of 10−4 with decays by 0.1 every 10 epochs and batch size equals 20. In
addition, we used two active data augmentation techniques: we used random crop data
augmentation followed by random rotation using an angle between −10 to 10 degrees. In
summary, our experiments are divided into two scenarios: In the first scenario, we used
retrained models of ImageNet, while in the second scenario, we used pretrained models
that were trained on medical imaging task.
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4.1. First Scenario

In the first scenario, we used three pretrained CNN architectures on ImageNet [29]
(ResneXt-50 [30], Inception-V3 [31], and Densenet-161 [32]). Moreover, we used two loss
functions: MSE and Dynamic Huber. Figures 5–10 summarize the obtained results of the
first scenario for PC, MAE, RMSE, PCsubj, MAEsubj, and RMSEsubj, respectively. From the
results, we notice that for all models almost the Dynamic Huber loss gives better results
then MSE loss function. This proves the efficiency of using Dynamic Huber loss function
for this regression task. On the other hand, we notice that the three trained models with
Huber dynamic loss achieved close results. In details, ResneXt-50 achieved the best results
performance in MAE, PCsubj, MAEsubj, and RMSEsubj, while Densenet-161 achieved the
best result for PC metric and Inception-v3 for RMSE metric. In addition, we notice that
Folds 2 and 3 are more challenging compared with Folds 1, 4, and 5, this is probably
because these two folds contain more challenging patients than the other folds.

In order to study the influence of changing the hyperparameters, we used Inception-v3
architecture, MSE loss function, different values of the batch size (64, 32, 20, and 16), and
two different initial learning rates (10−4 and 10−3). Figure 11 shows the PC and MAE
results of these experiments. From these results, we notice that changing the learning rate
or the batch size has no big influence on the results. On the other hand, using smaller batch
size (32–16) gave slightly better performance, as the dataset has a medium size.

Fold1 Fold2 Fold3 Fold4 Fold5 Mean
0.7

0.75

0.8

0.85

0.9

0.95

1

PC

ResneXt-50 MSE ResneXt-50 Huber
Densenet-161 MSE Densenet-161 Huber
Inception-v3 MSE Inception-v3 Huber

Figure 5. PearsonCorrelation coefficient (PC) results of the first scenario.
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Fold1 Fold2 Fold3 Fold4 Fold5 Mean
0

2

4

6

8

M
A

E

ResneXt-50 MSE ResneXt-50 Huber
Densenet-161 MSE Densenet-161 Huber
Inception-v3 MSE Inception-v3 Huber

Figure 6. Mean Absolute Error (MAE), results of the first scenario.

Fold1 Fold2 Fold3 Fold4 Fold5 Mean
0

2

4

6

8

10

12

14

R
M

SE

ResneXt-50 MSE ResneXt-50 Huber
Densenet-161 MSE Densenet-161 Huber
Inception-v3 MSE Inception-v3 Huber

Figure 7. Root Mean Square Error (RMSE), results of the first scenario.
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Fold1 Fold2 Fold3 Fold4 Fold5 Mean
0.7

0.75

0.8

0.85

0.9

0.95

1

P
C

su
bj

ResneXt-50 MSE ResneXt-50 Huber
Densenet-161 MSE Densenet-161 Huber
Inception-v3 MSE Inception-v3 Huber

Figure 8. PCsubj results of the first scenario.

Fold1 Fold2 Fold3 Fold4 Fold5 Mean
0

2

4

6

M
A

E s
ub

j

ResneXt-50 MSE ResneXt-50 Huber
Densenet-161 MSE Densenet-161 Huber
Inception-v3 MSE Inception-v3 Huber

Figure 9. MAEsubj results of the first scenario.

4.2. Second Scenario

In the second scenario, we use the same models as the first scenario but this time they
were trained on the recognition of COVID-19 from X-ray scans [2]. In more detail, four lung
diseases plus neutral were used to train the CNN architectures [2]. The objective of this
scenario is to study the influence of the pretrained model which was trained on medical
imaging task. The experimental results are summarized in Table 4. From these results, we
notice that Inception-v3 achieved the best performance. Similar to the results of the first
scenario, the Dynamic Huber loss gives better results than MSE loss function for most of
the evaluation metrics.
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Fold1 Fold2 Fold3 Fold4 Fold5 Mean
0

2

4

6

8

10

12

R
M

SE
su

bj

ResneXt-50 MSE ResneXt-50 Huber
Densenet-161 MSE Densenet-161 Huber
Inception-v3 MSE Inception-v3 Huber

Figure 10. RMSEsubj results of the first scenario.

LR1 LR2
0.7

0.75

0.8

0.85

0.9

0.95

1

PC

64 32 20 16

(a)

LR1 LR2
0

2

4

6

8

M
A

E

64 32 20 16

(b)

Figure 11. (a) PC, (b) MAE. Inception-v3 architecture and MSE loss function for studying the influence of two learning rates
(LR1 = 10−4 and LR2 = 10−3) and four batch sizes (64, 32, 20, and 16).

As the pretrained models using X-ray data showed performance improvement com-
pared with ImageNet pretrained models, we investigate the converging speed of each
training scenario. To this end, we compare the convergence of the three CNN architectures
using Huber loss function and Fold 1 and 2 splits. From Figure 12, we notice that the
pretrained models on X-ray data converge faster to the best performance than the ImageNet
pretrained models in four out of six experiments. Consequently, using pretrained model
trained on medical imaging not only improve the performance, but it can speed up the
training process.
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Table 4. Fivefold cross-validation results of the second scenario (pretrained X-ray models) using three CNN architectures—
ResneXt-50, Densenet-161, and Inception-v3—and two loss functions (MSE, Huber). § Mean and STD were calculated
using the average and the standard deviation of the five folds results, respectively. ∗ the evaluation metrics were calculated
using all five folds predictions. The bold is for the results of the five folds. The red, purple and blue colors are for the best
performances for Mean (5 folds), STD (5 folds) and All Predictions, respectively.

Architecture Fold PC ↑ MAE ↓ RMSE ↓ PCsubj ↑ MAEsubj ↓ RMSEsubj ↓
Fold 1 0.9453 5.24 8.77 0.9619 4.05 6.58
Fold 2 0.8569 6.68 13.39 0.9234 4.87 8.70

ResneXt-50 Fold 3 0.9083 6.17 12.53 0.9196 5.23 11.17
MSE Fold 4 0.9589 3.97 6.32 0.9884 2.31 3.22

Fold 5 0.9457 5.99 9.05 0.9674 4.92 6.43
Mean (5 folds) § 0.9230 5.61 10.01 0.9521 4.28 7.22
STD (5 folds) § 0.0371 0.9412 2.6019 0.0265 1.0577 2.6391

All Predictions ∗ 0.9173 5.62 10.41 0.9431 4.29 7.91

Fold 1 0.9487 4.96 8.48 0.9633 3.80 6.43
Fold 2 0.8227 6.93 15.29 0.9147 4.96 9.25

ResneXt-50 Fold 3 0.9191 5.35 11.84 0.9301 4.27 10.47
Huber Fold 4 0.9622 3.70 6.09 0.9873 2.39 3.26

Fold 5 0.9507 5.50 8.80 0.9703 4.34 6.30
Mean (5 folds) § 0.9207 5.29 10.10 0.9532 3.95 7.14
STD (5 folds) § 0.0510 1.0367 3.1735 0.0267 0.8637 2.5221

All Predictions ∗ 0.9132 5.30 10.65 0.9427 4.02 7.87

Fold 1 0.9438 5.15 8.65 0.9611 3.79 6.36
Fold 2 0.8768 6.48 12.34 0.9354 4.62 8.04

Densenet-161 Fold 3 0.9116 5.86 12.44 0.9259 4.73 10.89
MSE Fold 4 0.9576 4.11 6.65 0.9861 2.97 4.14

Fold 5 0.9479 5.79 8.99 0.9691 4.82 6.38
Mean (5 folds) § 0.9275 5.48 9.81 0.9555 4.18 7.16
STD (5 folds) § 0.0297 0.8032 2.2503 0.0220 0.7101 2.2385

All Predictions ∗ 0.9234 5.49 10.12 0.9501 4.09 7.56

Fold 1 0.9440 4.97 8.78 0.9569 3.91 6.84
Fold 2 0.8938 6.14 11.36 0.9459 4.57 7.58

Densenet-161 Fold 3 0.9158 5.89 12.33 0.9290 4.99 10.87
Huber Fold 4 0.9643 3.67 5.93 0.9893 2.33 3.16

Fold 5 0.9526 5.48 8.71 0.9697 4.56 6.54
Mean (5 folds) § 0.9341 5.23 9.42 0.9582 4.07 7.00
STD (5 folds) § 0.0257 0.8749 2.2505 0.0205 0.9369 2.4615

All Predictions ∗ 0.9305 5.25 9.75 0.9523 4.06 7.51

Fold 1 0.9483 5.22 8.51 0.9630 3.95 6.53
Fold 2 0.8571 6.63 13.14 0.9258 5.01 8.57

Inception-v3 Fold 3 0.9111 5.89 12.28 0.9240 5.22 10.84
MSE Fold 4 0.9605 3.91 6.22 0.9878 2.52 3.27

Fold 5 0.9463 6.10 9.22 0.9667 5.02 6.74
Mean (5 folds) § 0.9247 5.55 9.87 0.9535 4.34 7.19
STD (5 folds) § 0.0375 0.9362 2.5335 0.0248 1.0149 2.4992
All predictions 0.9163 5.90 10.57 0.9470 4.16 7.51

Fold 1 0.9526 4.81 8.43 0.9673 3.81 6.45
Fold 2 0.8905 6.17 11.64 0.9414 4.59 7.63

Inception-v3 Fold 3 0.9230 5.47 11.69 0.9324 4.75 10.41
Huber Fold 4 0.9607 3.79 6.33 0.9850 2.85 3.91

Fold 5 0.9556 5.29 8.14 0.9753 4.04 5.56
Mean (5 folds) § 0.9365 5.10 9.25 0.9603 4.01 6.79
STD (5 folds) § 0.0264 0.7896 2.1022 0.0201 0.6738 2.1786

All Predictions ∗ 0.9330 5.34 9.44 0.9558 3.98 6.87
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(a)

(b)

Figure 12. (a) Fold1 and (b) Fold2. Convergence comparison: X-ray pretrained models vs. ImageNet pretrained models
using Huber loss function.

5. Discussion

The comparison between the first and second scenario experiments shows that the
pretrained models on medical imaging task give better result than the pretrained models of
ImageNet. From all experiments, we conclude that the best scenario for COVID-19 infection
percentage estimation is by using Inception-v3 architecture with an X-ray pretrained model
and Dynamic Huber loss function.
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To calculate the required time to estimate the COVID-19 infection percentage, we used
a PC with Intel i7-CPU (3.60GHz × 8), 64 GB Ram, and NVIDIA GPU Device Geforce
TITAN RTX 24 GB. Table 5 shows the testing time of the three CNN architectures. In the
second column, we calculated the required time for one slice. As the number of slices
is different from one patient to another, we calculated the required time of batch size of
120 slices (third column of Table 5). The goal of calculating this time is to estimate the
required time for volumetric CT-scan, where we calculate the testing time of 120 slices.
From Table 5, we notice that the testing time is close for all CNN architectures with slightly
lower required testing time for ResneXt-50 architecture for both 1 and 120 slices. Moreover,
the required testing time of one volumetric CT-scan is very small (~0.2 s). This proves that
estimating the COVID-19 infection percentage using CNN architectures can be applied as
real-time applications.

Table 5. Average of five testing times for the evaluated CNN architectures (ResneXt-50, Densenet-161
and Inception-v3).

Model Testing Time of One Slice (s) Testing Time of 120 Slices (s)

ResneXt-50 0.012470 0.171227
DenseNet-161 0.023900 0.205754
Inception-v3 0.013844 0.185773

6. Conclusions

In this paper, we introduced the Per-COVID-19 dataset, which presents COVID-19
infection percentage estimation from CT scans. The estimation of COVID-19 infection
percentage can help quantify the infection and monitor the evolution of the disease. In
addition, the required time and efforts from the radiologists to estimate the COVID-
19 infection are less compared with infection segmentation labeling. This can help in
constructing a large dataset for COVID-19 severity tracking with reasonable time.

Moreover, we evaluated the performance of three CNN architectures: ResneXt-50,
Densenet-161, and Inception-v3. For the three CNN architectures, we used two loss
functions which are MSE and Dynamic Huber loss. In addition, we evaluate two pretrained
models scenarios. In the first scenario, we used ImageNet pretrained models. In the second
scenario, we used pretrained models that where trained on X-ray scans to investigate the
influence of using pretrained models that were trained on medical imaging task.

The experimental results show that using the X-ray pretrained models improve the
results. Moreover, the experiments using Dynamic Huber loss function achieved better
performance than the ones used standard MSE loss function. From other hand, Inception-v3
outperformed ResneXt-50 and Densenet-161 architectures in both scenarios. The required
time to estimate the COVID-19 infection from a slice is ~0.02 (s). On the other hand,
the required time for a CT scan of 120 slices is approximately 0.2 s, which is very small
compared with expert radiologists. Both results and testing time prove that is possible to
implement real-time application for COVID-19 infection percentage estimation.

Despite the fact that the constructed database consists of 183 CT scans and 3986 slices,
adding more CT scans and slices will provide more generalization ability to estimate the
COVID-19 infection percentage. From the COVID-19 percentage slices histogram, it is clear
that the dataset has less severe slices than other slices categories. This makes estimating the
COVID-19 infection percentage for the sever cases more challenging than the other cases.
As future future work, we propose to test other CNN architectures with using different
data augmentation techniques. Including more labeled CT scans from different devices
with different recording settings will help improve the results.
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