Large Deviations Principle for the Cubic NLS Equation - Archive ouverte HAL
Article Dans Une Revue Communications on Pure and Applied Mathematics Année : 2023

Large Deviations Principle for the Cubic NLS Equation

Résumé

In this paper, we present a probabilistic study of rare phenomena of the cubic nonlinear Schrödinger equation on the torus in a weakly nonlinear setting. This equation has been used as a model to numerically study the formation of rogue waves in deep sea. Our results are twofold: first, we introduce a notion of criticality and prove a Large Deviations Principle (LDP) for the subcritical and critical cases. Second, we study the most likely initial conditions that lead to the formation of a rogue wave, from a theoretical and numerical point of view. Finally, we propose several open questions for future research.
Fichier principal
Vignette du fichier
main.pdf (882.2 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03428570 , version 1 (15-11-2021)

Identifiants

Citer

Miguel Angel Garrido, Ricardo Grande, Kristin M Kurianski, Gigliola Staffilani. Large Deviations Principle for the Cubic NLS Equation. Communications on Pure and Applied Mathematics, 2023, 76 (12), pp.4087-4136. ⟨10.1002/cpa.22131⟩. ⟨hal-03428570⟩
38 Consultations
57 Téléchargements

Altmetric

Partager

More