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LARGE DEVIATIONS PRINCIPLE FOR THE CUBIC NLS EQUATION

MIGUEL ANGEL GARRIDO, RICARDO GRANDE, KRISTIN M. KURIANSKI, AND GIGLIOLA STAFFILANI

Abstract. In this paper, we present a probabilistic study of rare phenomena of the cubic nonlinear
Schrödinger equation on the torus in a weakly nonlinear setting. This equation has been used as a
model to numerically study the formation of rogue waves in deep sea. Our results are twofold: first,
we introduce a notion of criticality and prove a Large Deviations Principle (LDP) for the subcritical
and critical cases. Second, we study the most likely initial conditions that lead to the formation
of a rogue wave, from a theoretical and numerical point of view. Finally, we propose several open
questions for future research.

1. Introduction

1.1. Motivation and background. In the last few decades there has been considerable research
in the field of dispersive equations, and particularly on the nonlinear Schrödinger (NLS) equation:

(1.1)

{
i∂tu+ ∆u = µ |u|2 u, µ = ±1,

u|t=0 = u0 .

One of the most fundamental questions is that of existence and uniqueness of solutions. The
question of well-posedness on Rd was extensively studied in the 1980s and the 1990s for subcritical
initial data [14, 37, 45, 62] and later for energy and mass critical initial data [9, 39, 15, 63, 31].
Well-posedness on the torus Td received much attention in the 1990s, mainly due to Bourgain’s
breakthrough paper [6], which was followed by work in [41, 44, 65]. These results are deterministic,
in the sense that one shows that a solution exists for every initial datum u0 in a certain space,
typically Sobolev spaces such as Hs where the regularity s must be larger or equal to a critical
value sc.

Beyond existence of solutions, it is important to understand the long-time behaviour of such
solutions. In Rd solutions to (1.1) with µ = 1 and in the critical and subcritical case scatter
(sometimes under some technical conditions), see for example [37, 15, 63, 31, 61, 64], while in the
super critical case blow-up may occur, see the recent work [36]. In the case µ = −1, some solutions
to (1.1) blow up in finite time, and therefore they cannot be extended indefinitely, see for example
[52, 36]. In contrast to this generic behavior, certain types of initial data give rise to traveling
waves and soliton solutions, see [1] and the references therein. These solutions display an unusual
long-term behavior, and as a result they are considered rare phenomena.

On the torus Td, scattering is not possible so one expects different asymptotics. In particular, it is
of great physical interest to analyse phenomena related to weak turbulence, and more precisely that
of energy transfer. With this we mean the expected behaviour of certain initial data with frequency
localised support that evolve into solutions whose support lives mostly in higher frequencies. This
phenomenon is connected to the question of asymptotic growth of Sobolev norms of solutions
to the Schrödinger equation whose study was started by Bourgain [10] and later continued in
[58, 57, 60, 26, 25, 43, 55, 4, 13, 16, 40] among others. In addition to such theoretical results,
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there are many interesting simulations and experimental results about transfer of energy to high
frequencies, see for example [51, 17, 42, 43].

In 1988, the work of Lebowitz, Rose, and Speer [46], followed by Bourgain’s papers on invariant
measures1 [7, 8], started the probabilistic study of solutions to the nonlinear Schrödinger equation in
a context in which until then harmonic and Fourier analysis had been the predominant and preferred
tools of investigation. In such works, one typically considers random initial data, whose Fourier
coefficients are normally distributed. This viewpoint has been extensively used to obtain generic
results which hold for almost every initial datum (i.e. almost surely). For example, this additional
flexibility led in many cases to an improved well-posedness theory, see for example [32, 29, 30]. The
random data theory has also been fundamental in the study of the long-term behaviour of solutions
to (1.1) on Td that we mentioned above. Indeed, one of the most interesting lines of research in
this direction is the derivation of the Wave Kinetic Equation (WKE), which connects the study
of the typical size of the Fourier coefficients of the solution to (1.1) to the study of solutions to a
kinetic equation [11, 18, 19, 28, 27, 59]. All such works make the most of probabilistic estimates to
argue that non-generic behavior is unlikely, but few of them focus on the study of such non-generic
behavior.

In this paper, we study rogue waves as an interesting and still not well understood example
of rare phenomena. Oceanographers generally define rogue waves to be deep-water waves whose
amplitude exceeds twice the characteristic wave height expected for the given surface conditions
[22, 34]. Over the past decades, there has been considerable interest in modelling rogue waves, both
because analytically their origins are still mysterious and because their sudden appearances pose a
threat for a variety of naval infrastructure.

Several evolution equations have been classically used as models for the study of rogue waves.
Two of the most popular models are given by the cubic Schrödinger equation and the Dysthe
equation. The Dysthe equation has been the subject of many experimental and computational
works, for instance [22, 33, 35]; as well as some theoretical results, e.g. [38, 53]. A few variants of the
NLS equation have also been used to model rogue wave formation, see [21, 54] among others. Note
that all these models are derived from the incompressible Navier-Stokes equation, after truncating
an asymptotic expansion of the modulation of a wavetrain at various orders [33, 53].

There are several theories to explain the precise mechanism for the formation of rogue waves [54],
but this phenomenon is still the subject of much debate. In the case of the focusing NLS equation
in R, Bertola and Tovbis obtained a precise description of a deterministic class of solutions near
their peak [5]. One of the goals of this paper is to provide a characterization of rogue waves of the
weakly nonlinear NLS equation on T = [0, 2π] with random initial data.

The results in this paper are inspired by some recent work of Dematteis, Grafke, Onorato, and
Vanden-Eijnden [21, 22, 23]. In these papers, the authors conjecture the existence of a Large
Deviation Principle that may be used to predict and study the formation of rogue waves. More
precisely, they consider an equation akin2 to (1.1) with µ = −1 on a circle of fixed size L, with
random initial data u0 of the form

(1.2) u0(x) =
∑
|k|≤N

ϑke
ik·x.

1There have been many recent advances on this topic, see [29, 30] and the references therein.
2Technically, the equations in [21] and [22] are different, but the methods and the underlying theory that the

authors propose are similar, see [23]. Interestingly, their numerics and experimental results seem to hold regardless
of the equation, with some natural modifications.
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Here, the set of initial data is parametrized by ϑ = (ϑk)|k|≤N ∈ C2N+1. In order to make u0

random, the authors endow the space of parameters C2N+1 with a probability measure such that
{ϑk}|k|≤N are independent and identically distributed (i.i.d.) complex Gaussian random variables

with Eϑk = Eϑ2
k = 0 and E|ϑk|2 = c2

k, for some fast-decaying ck > 0.

For t > 0 and z > 0 fixed, the set of initial data that generate a rogue wave of height at least z
at time t is given by

(1.3) D(t, z) :=

{
(ϑk)|k|≤N ∈ C2N+1

∣∣∣ sup
x∈[0,L]

|u(t, x |ϑ)| > z

}
where u is the solution to the equation with initial data (1.2).

In order to quantify the likelihood of D(t, z), Dematteis et al. propose a theoretical framework
that allows them to conclude a large deviations principle (LDP), provided that the minimization
problem

(1.4) ϑ∗(z) = argmin
ϑ∈D(t,z)

I(ϑ).

has a unique solution, where

I(ϑ) = max
y∈C2N+1

[ 〈y, ϑ〉 − S(y)] and S(y) = logEe〈y,ϑ〉.

In particular, for a fixed t > 0 and as z →∞, they claim that

(1.5) logP(D(t, z)) = −I(ϑ∗(z)) + o(1).

The goal of this paper is to prove rigorously conjecture (1.5) in the case of the NLS equation
with a weak nonlinearity. The application of the theoretical framework proposed by Dematteis et
al. requires verifying a set of strong assumptions that are very difficult to check in practice, such
as bounds on the gradient ∇ϑ supx∈[0,L] |u(t, x |ϑ)| or the convexity of the set D(t, z), so that the

existence of a unique minimizer for (1.4) is guaranteed.

For these reasons, we follow a different approach that allows us to establish an LDP of the form

(1.6) logP
(

sup
x∈T
|u(t, x)| > z

)
= −I(z) + o(1), as z →∞,

where we can derive the rate function I without having to solve the minimization problem in (1.4).
In (1.6), u is the solution to the equation with initial data of the form (1.2) with an infinite number
of Fourier modes (N =∞). See Theorem 1.1 below for a precise statement.

In the second part of the paper, we investigate the following question: “Conditioned on the fact
that we observe a rogue wave of height at least z > 0 at time t > 0, what is the most likely initial
datum that generates such phenomenon?” To answer this question, we recover the minimization
problem given by the right-hand side of (1.4), and show that it admits a two-parameter family
of solutions. In addition, we can construct neighborhoods U(t, z) around the family of minimizers
whose probability is almost identical to that of D(t, z). See Theorem 1.9 below for a precise
statement.

1.2. Statement of results. In this paper, we focus on the cubic Schrödinger equation on the
torus T = [0, 2π] with a weak nonlinearity:

(1.7)

{
i∂tu+ ∆u = µ εα|u|2 u
u(t, x)|t=0 = u0
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for α ≥ 0 and µ = ±1, and where the parameter ε > 0 controls the size of the nonlinearity. We
consider random initial data of the form:

(1.8) u0(x) =
∑
k∈Z

ckηke
ikx

where

(1) the coefficients have the form ck = a e−b|k|, or ck = a e−b|k|
2
, for all k ∈ Z, where a, b > 0 are

fixed; and

(2) {ηk}k∈Z are independent, identically distributed, complex Gaussian random variables with
Eηk = 0, Eηkηj = 0 and Eηkηj = δkj for k, j ∈ Z.

Assumption (1) is based on the choice of coefficients in [22], but our results extend to other
families of coefficients, see Remark 1.3. In the sequel we assume that a = 1 since we can rescale
the equation if that is not the case.

Our first result is a rigorous proof of (1.6) for solutions to (1.7) with α = 2 and initial data of
the form (1.8).

Theorem 1.1 (Large Deviation Principle). Consider the NLS equation on the circle T = [0, 2π]:

(1.9)

{
i∂tu+ ∆u = ε2|u|2 u
u(0, x) =

∑
k∈Z ckηke

ikx

with initial data as in (1.8). Consider the probability of seeing a large wave of height z(ε) :=

z0 ε
−1/2 > 0 at time t > 0 and fixed z0 > 0. If t . ε−1 we have that

(1.10) lim
ε→0+

ε logP
(

sup
x∈T
|u(t, x)| > z0 ε

−1/2

)
= − z2

0∑
k∈Z c

2
k

.

Remark 1.2. The requirement that t . ε−1 is connected to the criticality of the problem. This
notion of criticality is discussed in Remark 1.7. The proof of Theorem 1.1 is based on approxi-
mating the solution u by a function that satisfies (1.10). For subcritical times t � ε−1, a linear
approximation suffices. For critical times t = O(ε−1), the linear approximation is not enough, and
we must use a resonant approximation instead.

Remark 1.3. The coefficients ck given in (1.8) are based on those in [22], which are chosen to model
observations in the North Sea. Finding the optimal family of coefficients (in terms of decay) so
that (1.10) holds is an interesting open question.

Remark 1.4. We have stated Theorem 1.1 for the defocusing equation, but our results extend to
the focusing equation. In fact the sign of the nonlinearity has no effect in our results since we are
in a weakly nonlinear regime. As we will show below, our results are strongly based on the special
form that a linear solution takes in the 1D setting, as well as the resonant set in this dimension.
We speculate though that a possible extension to a 2D setting may be possible for irrational tori.
There in fact, it has been proved [43] that the irrationality of the torus completely decouples the
resonant set into two 1D resonant sets, one for each coordinate.

Remark 1.5. The cubic NLS equation on T is an integrable system, however our results are related
to neither integrability nor blow-up. We note that our initial data live in ∩s>0H

s(T) almost surely3,

3By Bourgain’s work [6] one first obtains local well-posedness in L2 in an interval of time depending on the L2

norm of the initial data, then by using conservation of mass, the local well-posedness and preservation of regularity
guarantee the result for all times in ∩s>0H

s(T). More on this in Remark 3.2 below.
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thus a unique global solution exists almost surely. The question of rogue waves is related to the
L∞(T)-norm of the solutions and their growth over time. Most solutions to the equation will barely
grow over time. As shown in Section 5, rogue waves will typically peak at a certain point in space
and time and decrease in size quickly after.

The factor of ε2 in front of the cubic nonlinearity in Theorem 1.1 is motivated by the standard
notation in the PDE literature. However, our techniques can handle the more general scenarios
presented below. For the sake of concreteness, we will limit ourselves to the setting in Theorem 1.1
in the rest of the paper.

Theorem 1.6. Consider the NLS equation on the torus T = [0, 2π]:{
i∂tu+ ∆u = εα |u|2 u
u(0, x) =

∑
k∈Z ckηke

ikx,

where α > 0, and initial data as in (1.8). Consider the probability of seeing a large wave of height

z(ε) := z0ε
−1/2 at time t ∼ ε−β for some β ∈ R. Then we have that:

• If α− 1 > β, then (1.10) holds.

• If α− 1 = β and β > 0, then (1.10) holds.

Remark 1.7. Let us motivate the range of parameters in Theorem 1.6. First we rewrite (1.7) by
using Duhamel formula:

u(t) = eit∆u0 + unl(t) = eit∆u0 + εα
∫ t

0
ei(t−t

′)∆|u|2u(t′) dt′.

At a certain fixed time t (independent of ε) we impose the condition of seeing a rogue wave of size

ε−1/2, i.e. ‖u(t)‖L∞(T) > ε−1/2. Next we estimate the nonlinear term unl(t) in some space X which

embeds continuously into L∞(T). In this paper, we use various Fourier-Lebesgue spaces such as
X = FL0,1, but other choices such as Xs,b spaces introduced by Bourgain in [6] are possible. Then
we have that

ε−1/2 < ‖u(t)‖L∞x ≤ ‖u(t)‖X ,
and

‖unl(t)‖X = εα
∥∥∥∥∫ t

0
ei(t−t

′)∆|u|2u(t′) dt′
∥∥∥∥
X

. εα ‖u‖3X .

Note that the right-hand side is at least as large as εα−3/2 (but it might be much larger!). Assuming
that this trilinear estimate is sharp, we say that the problem is subcritical if α−3/2 < −1/2, critical
if α−3/2 = −1/2 and supercritical otherwise. This explains the range of parameters in Theorem 1.6
when β = 0. The notion of criticality may be extended to times t which depend on ε by rescaling
the equation.

Remark 1.8. Note that Theorem 1.1 corresponds to the choice α = 2. An interesting open question
would be to understand the critical case (α, β) = (1, 0), as well as any supercritical cases such as
α = 0 (fully non-linear regime). In fact, in the case α = 0, the numerical experiments in [21, 22, 23]
suggest that the probability of seeing a rogue wave decays at a slower speed. This would correspond
to a non-Gaussian scaling in (1.10) with a sub-quadratic rate function I(·) in (1.6).

Our work constitutes a first step towards solving this more challenging problem, and proposes
a framework to tackle the non-linear problem via approximating the solution of (1.9) and deriving
explicit probability bounds for this approximation.
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Theorem 1.1 allows us to quantify the probability that we observe a rogue wave. Despite
being rare, rogue waves can actually happen. Our next result investigates the following question:
“Conditioned on the fact that we observe a rogue wave of height at least z > 0 at time t > 0, what
is the most likely initial datum that generates such phenomenon?” To answer this question, we
introduce the set

H = {(rk, φk)k∈Z | rk ≥ 0, φk ∈ [0, 2π)},
and endow it with a probability measure such that rke

iφk are distributed as independent complex
Gaussian as in (1.8). Then, we can parametrize the space of initial data as follows:

ϑ = (rk, φk)k∈Z ∈ H 7→ u0(x | ϑ) =
∑
k∈Z

ckrke
ikx+iφk .

As we explain in Section 5, the question of finding the most likely initial data is connected to a
certain minimization problem over the set

(1.11) D(t, z0ε
−1/2) =

{
ϑ ∈ H

∣∣∣ sup
x∈T
|u(t, x | ϑ)| > z0ε

−1/2

}
.

The solution to this minimization problem when u is the solution of the linear Schrödinger equation
yields a two-parameter family of initial data given by:

r∗k :=
ckz0ε

−1/2∑
j∈Z c

2
j

,

φ∗k := φ∗0 − kx∗ + k2t (mod 2π) ,

(1.12)

where x∗ ∈ T parametrizes the position of the peak of the rogue wave, and φ∗0 ∈ [0, 2π) parametrizes
the phase of the Fourier mode associated with c0.

The main result in Section 5 shows that this special family of initial data concentrates as much
probability as the entire set of rogue waves (1.11). In order to state this theorem, we construct a
small neighborhood U(ε) around this family, given by the ϑ = (rk, φk)k∈Z satisfying:

r∗k ≤ rk ≤ r∗k + ε2/5 for all |k| ≤ −1

b
log

(
2
∑

j∈Z c
2
j

z0
ε9/10

)
,

|φk − φ∗k| ≤ ε for all |k| ≤ ε−1/2 except k = 0, 1.

(1.13)

Theorem 1.9. Consider the set U(ε) given by (1.12)-(1.13). Then U(ε) satisfies the same LDP,
(1.10), as the set of rogue waves (1.11). Moreover, U(ε) is almost entirely contained in the set

D(t, z0ε
−1/2 − ε). More precisely,

(1.14) logP
(
U(ε)−D(t, z0ε

−1/2 − ε)
)
. − exp(cε−1/2)) as ε→ 0+.

Remark 1.10. The construction of the set U(ε) in Theorem 1.9 is based on the linear Schrödinger
equation. However, one can adapt this construction to tackle the nonlinear equation up to times
given by Theorem 1.1. See Section 5 for more details.

Finally, we list a series of interesting open questions at the end of Section 5. Furthermore, we
complement this theoretical analysis with some simulations to illustrate how the family of initial
data given by (1.12) behaves as time passes.

1.3. Ideas of the proof.
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1.3.1. Main ideas in Theorem 1.1. At a conceptual level, the proof of Theorem 1.6 and that of
Theorem 1.1 are similar, so let us focus on the latter. The main ideas of the proof of Theorem 1.1
are: (a) finding a good approximation uapp to the solution to the NLS equation (1.9), and (b)
proving a LDP akin to (1.10) for uapp. For small times t� ε−1, the linear flow constitutes a good
approximation, whereas larger times require the use of a resonant approximation4.

The resonant approximation is an explicit solution to an equation similar to (1.9), where we
replace the nonlinearity ε2|u|2u by a different cubic nonlinearity that captures the main contribution
of ε2|u|2u to the equation over timescales t = O(ε−1). This approximation has the form:

(1.15) uapp(t, x) = e2itε2M
∑
k∈Z

ckηk e
ikx+iε2t c2k|ηk|

2−it|k|2

where M = ‖u(t)‖2L2(T) is the mass, which is conserved. Further details are provided in Section 4.1.

Such approximations have been used by Carles, Dumas and Sparber [12] and Carles and Faou [13]
in the context of instability of the periodic NLS equation and energy cascades, respectively.

Intuitively, the reason why supx∈T |uapp(t, x)| remains sub-Gaussian is that nonlinear effects are
restricted to the phases of the Fourier coefficients, while the moduli are unchanged. It is unclear
whether this holds in other regimes beyond those given by Theorem 1.6, especially so in the case
of the focusing NLS equation.

Both the linear and resonant approximations satisfy an LDP of the form (1.10). The first
ingredient in the proof of Theorem 1.1 is a general result in Large Deviations Theory known as the
Gärtner-Ellis theorem, see Section 2 as well as Proposition 4.1. This classic result in Probability
Theory uses convex analysis to state that an LDP for a family of probability measures, {µε}ε>0,
holds provided that the limit of their re-scaled cumulant-generating functions exists and enjoys
some good regularity properties.

The second ingredient in the proof of Theorem 1.1 is a bootstrapping argument, which shows
that a large difference between the actual solution to (1.9) and our approximation must be a result
of an even larger initial datum u0. Such large initial data are very unlikely, which allows us to
replace the actual solution u(t, x) in (1.10) by the approximation uapp(t, x) up to a negligible error.
As a result one can extend the LDP from uapp to u.

1.3.2. Main ideas in Theorem 1.9. The goal of this result is to show that the most likely way in
which rogue wave arise in this weakly nonlinear context is due to phase synchronization5. The
construction of the one-sided neighborhood U(ε) in (1.13) is based on two-scales: we control the

moduli of O(| log ε|) Fourier modes, but we force O(ε−1/2) phases to almost synchronize at a certain
point in space and time.

In Proposition 5.3, we exploit the fact that our construction is explicit to show that U(ε) satisfies
the same LDP as that in Theorem 1.1 by an elementary argument. The key result, however, is to
show that the elements in U(ε) are almost exclusively rogue waves. To prove this we must quantify
the probability that the Fourier modes that we do not control in U(ε) work against us and create
cancellation. Loosely speaking, this is achieved by proving the estimate

sup
x∈T
|u(t, x)|2 ≥

 ∑
|k|.| log ε|

ck|ηk|

2

+ E(ε)

4Related to the remark above about the 2D problem, for irrational 2D tori it is exactly in the resonant part of
the NLS equation that we see the decoupling into two 1D resonant sets and hence we may be able to have good
approximations also in 2D using the 1D tools developed below.

5Also known as “constructive interference” in the Physics literature.
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for some explicit error function E(ε). The key argument in the proof of Theorem 1.9 is a careful
analysis of this error function, which shows that it is very close to zero with very high probability.

1.4. Outline. In Section 2, we develop a LDP for the linear Schrödinger equation (1.7) (with
µ = 0). In Section 3, we prove Theorem 1.1 for subcritical times. In Section 4, we introduce the
resonant approximation and prove Theorem 1.1 for critical times. Finally, in Section 5 we motivate
and study the minimization problem that leads to (1.12). Moreover, we prove Theorem 1.9 and
conduct numerical simulations about the “most typical” rogue waves.

1.5. Notation. We write A . B to indicate an estimate of the form A . CB for some positive
constant C which may change from line to line. The inequality A .d B indicates that the implicit
constant C depends on d.

We also employ the big O notation A = Od(B), which means that A . B as d→ 0. For a real
number a, the notation a− means a− ε for 0 < ε� 1 small enough. Similarly, a+ means a+ ε for
0 < ε� 1 small enough.

For 1 ≤ p ≤ ∞ we often work in the space Lp([a, b]), which consists of functions f : [a, b] → C
such that

‖f‖Lp =

(∫ b

a
|f(x)|p dx

)1/p

<∞,

with the usual modifications when p =∞. Similarly, `p consists of sequences f = (fk)k∈Z, fk ∈ C,
such that

‖f‖`p =

(∑
k∈Z
|fk|p

)1/p

<∞.

In Section 3 and Section 4 we work in Fourier-Lebesgue spaces FLs,p = FLs,p(T) with s ∈ R
and 1 ≤ p ≤ ∞. These are spaces of functions f : T → C whose Fourier coefficients (fk)k∈Z have
the following finite norm:

‖f‖FLs,p = ‖〈k〉sfk‖`pk =

(∑
k∈Z
〈k〉ps |fk|p

)1/p

=

(∑
k∈Z

(1 + |k|)ps |fk|p
)1/p

.

Finally, we denote Hs(T) = FLs,2(T) as usual.

1.6. Acknowledgements. We thank Eric Vanden-Eijnden and Miguel Onorato for their sugges-
tions and helpful discussions about their work. The first author also thanks Promit Ghosal for
some rich conversations about Large Deviations Theory.

2. Large Deviations Principle for the linear Schrödinger equation

Consider the linear Schrödinger equation on the torus T = [0, 2π]:

(2.1)

{
i ∂tu+ ∆u = 0,
u(t, x)|t=0 = u0,

where the random initial data, u0, is given as in (1.8). Our goal is to estimate

P
(

sup
x∈T
|u(t, x)| ≥ z(ε)

)
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sharply, for some fixed t ∈ R and z(ε) large. More concretely, we want to obtain a Large Devi-
ations Principle (LDP) for supx∈T |u(t, x)|. This requires that we find a lower semi-continuous
function, I : [0,+∞) 7→ [0,+∞], and a real number α > 0, such that, for any z0 > 0 fixed, we have

(2.2) − inf
z∈(z0,+∞)

I(z) ≤ lim inf
ε→0+

εα log

(
P
(

sup
x∈T
|u(t, x)| ≥ z0ε

−1/2

))
,

and

(2.3) lim sup
ε→0+

εα log

(
P
(

sup
x∈T
|u(t, x)| ≥ z0ε

−1/2

))
≤ − inf

z∈[z0,+∞)
I(z).

We gather these results in the following proposition.

Proposition 2.1. Consider the linear Schrödinger equation on the torus T = [0, 2π] as in (2.1),
with random initial data given by u0 =

∑
k∈Z ckηke

ikx, presented in (1.8). Then,

(2.4) lim
ε→0+

ε logP
(∥∥e−it∆u0

∥∥
L∞x

> z0 ε
−1/2

)
= − z2

0∑
k∈Z c

2
k

,

for any t ∈ R and z0 > 0. In particular, (2.2) and (2.3) are satisfied with rate function I(z) =
z2∑
k∈Z c

2
k

and α = 1.

Remark 2.2. A posteriori we see that our choice for I is actually continuous, and hence

inf
z∈[z0,+∞)

I(z) = inf
z∈(z0,+∞)

I(z).

This implies that (2.2) and (2.3) is actually a chain of equalities, and we can prove the stronger
result presented in (2.4).

Remark 2.3. It is worth noticing that I is a quadratic function. This corresponds to a sub-Gaussian
behavior for the tails of supx∈T |u(t, x)|. Nevertheless, it is easy to see that supx∈T |u(t, x)| itself is
not Gaussian.

Remark 2.4. In the Probability literature, Lindgren studied various path properties of Gaussian
fields around its local maxima in a series of papers [47, 48, 49, 50]. However, these results do not
apply directly to our work since we are interested in establishing an LDP for the global maxima on
the space variable.

We divide the proof of Proposition 2.1 into two parts: first, we establish the lower bound,
which follows from the fact that we can explicitly derive the distribution of u(t, x), for a fixed pair
(t, x) ∈ R × T; and then, we prove the upper bound estimating from above supx∈T |u(t, x)|, and
applying the Gärtner-Ellis Theorem.

2.1. Lower Bound. The solution u for the linear flow in (2.1) can be written as

(2.5) u(t, x) = e−it∆u0(x) =
∑
k∈Z

ckηk e
i kx−i k2t,

for (t, x) ∈ R×T. Since all the terms in the sum are independent complex normal random variables,

so is u(t, x) as long as
∑

k∈Z E
[
uk(t, x)

]
,
∑

k∈Z E
[
uk(t, x)uk(t, x)

]
, and

∑
k∈Z E

[
uk(t, x)uk(t, x)

]
converge, where uk(t, x) := ckηk e

i kx−i k2t. It is easy to see that∑
k∈Z

E
[
uk(t, x)

]
=
∑
k∈Z

ckE [ηk] e
i kx−i k2t = 0,
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k∈Z

E
[
uk(t, x)uk(t, x)

]
=
∑
k∈Z

c2
kE [ηkηk] e

i 2kx−i 2k2t = 0,

and ∑
k∈Z

E
[
uk(t, x)uk(t, x)

]
=
∑
k∈Z

c2
kE [ηkη̄k] =

∑
k∈Z

c2
k <∞.

Therefore, for (t, x) ∈ R× T fixed, u(t, x) is a complex Gaussian distribution with mean 0 and
variance

∑
k∈Z c

2
k. It is worth noting that this distribution depends neither on t nor on x. That is,

as a random field, (t, x) 7→ u(t, x) is at stationarity.

It is a well-known result in Probability [56] that the modulus of a complex Gaussian random
variable with mean 0 and variance 2σ2 follows a Rayleigh distribution with parameter σ > 0
and probability density function

(2.6) f(x |σ) =
x

σ2
e−

x2

2σ2 , x ≥ 0.

This fact allows us to compute the lower bound as follows:

P
(

sup
x∈T
|u(t, x)| ≥ z0ε

−1/2

)
≥ P

(
|u(t, 0)| ≥ z0ε

−1/2
)

=

∫ +∞

z0ε−1/2

2x∑
k∈Z c

2
k

exp

(
− x2∑

k∈Z c
2
k

)
dx = exp

(
− z2

0ε
−1∑

k∈Z c
2
k

)
.

Hence, if we take α = 1 and define I(z) := z2∑
k∈Z c

2
k
, we can establish (2.2), as we wanted.

2.2. Upper bound. Since ηk is a standard complex Gaussian, we can write ηk as Rke
iϕk , where

Rk
i.i.d.∼ Rayleigh(1/

√
2) and ϕk

i.i.d.∼ U [0, 2π], with Rk and ϕk independent of each other (see [2],
Section 2.7). Then, from (2.5) we have:

(2.7)

sup
x∈T
|u(t, x)|2 =

∑
k∈Z

(ckRk)
2 + sup

x∈T

∗∑
j 6=k

cjckRjRk cos(ψj − ψk)

≤
∑
k∈Z

(ckRk)
2 +

∗∑
j 6=k

cjckRjRk =

(∑
k∈Z

ckRk

)2

,

where
∑∗ indicates a sum in all j, k ∈ Z, and ψk(t, x) = ϕk+kx−k2t. Using (2.7), we can estimate

from above the probability in (2.4) to get

(2.8) P
(

sup
x∈T
|u(t, x)| ≥ z0ε

−1/2

)
≤ P

(∑
k∈Z

ckRk ≥ z0ε
−1/2

)
.

In order to estimate the right-hand side of (2.8), we will derive an LDP for the continuous
parameter family µε, defined as the probability measures of

(2.9) Zε := ε1/2
∑
k∈Z

ckRk,

for ε > 0. The advantage of (2.9) is that we have gotten rid of the supremum on T, and recovered
the classic formulation for an LDP, where the Gärtner-Ellis Theorem may apply. We present below
the version of this result that we will use in our work. It corresponds to a modification of Theorem
2.3.6 in [24].



LARGE DEVIATIONS PRINCIPLE FOR THE CUBIC NLS EQUATION 11

Theorem 2.5 (Gärtner-Ellis Theorem). For λ ∈ R and ε > 0, let us define

(2.10) Λε(λ) := logE
[
eλZε

]
,

where Zε has distribution µε, as in (2.9). If the function Λ(·), defined as the limit

(2.11) Λ(λ) := lim
ε→0+

εΛε(ε
−1λ),

exists for each λ ∈ R, takes values in R, and is differentiable, then we have that

(2.12) − inf
z∈(z0,+∞)

Λ∗(z) ≤ lim inf
ε→0+

ε logµε((z0,+∞)),

and

(2.13) lim sup
ε→0+

ε logµε([z0,+∞)),≤ − inf
z∈[z0,+∞)

Λ∗(z),

where Λ∗(·) is the Fenchel-Legendre transform of Λ(·).

Remark 2.6. In the Probability literature, the function Λε(λ) is known as the cumulant-generating
function of Zε.

Remark 2.7. For the purpose of this section, i.e., to derive an upper bound for the right-hand side
of (2.8), we will only need (2.13). However, we present in Theorem 2.5 both the upper and lower
bounds, since we will use the latter in Section 5.

Next, let us compute the limit in (2.11), and check that the function Λ(·) satisfies the assumptions
required to apply Theorem 2.5. By direct computation using the density function for Rk in (2.6)
and the Monotone Convergence Theorem, we obtain

(2.14) Λε(ε
−1 λ) = lim

n→∞

∑
|k|≤n

log

(
1 +
√
πε−1/2 λ ck exp

(
ε−1 λ2 c2

k

4

)
P(Xk ≥ 0)

)
,

where Xk are independent normal random variables with mean ε−1/2 λ ck
2 and variance c2

k/2. Before
taking the limit as ε→ 0+, we need to study the series in (2.14) and prove that it actually converges.

Fix λ ∈ R and ε > 0, and denote ε−1/2 λ by λε. Since all the terms are positive, we can bound
P(Xk ≥ 0) by 1, and define the functions

(2.15) Fn(λε) =
∏
|k|≤n

(
1 +
√
π λε ck exp

(
λ2
ε c

2
k

4

))
,

for any n ∈ N. It is clear that Λε(ε
−1 λ) ≤ limn→∞ logFn(λε). Next, we can rewrite the product

in (2.15) as a sum over all subsets P of Pn := [−n, n] ∩ Z, namely

Fn(λε) =
∑
P⊂Pn

eV (P, λε),

where

(2.16) V (P, λε) =
1

2
|P | log(π) + |P | log (λε) +

∑
j∈P

log(cj) +
λ2
ε

4

∑
j∈P

c2
j ,

with the convention that V (∅, λε) = 0.
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Next we wish to maximize V (P, λε) over all P ⊂ Pn = [−n, n] ∩ Z, of which there are finitely
many. Let P ∗n be the subset where this maximum is attained. If we define the function f as

f(r) :=
√
πr er

2/4, it is easy to see that

(2.17) P ∗n = arg maxP⊂Pn

∏
j∈P

f (λε cj) .

The function f is monotone increasing in r, and the coefficients cj are symmetric in j and decreasing
in |j|. As a result, the optimal set P ∗n will be of the form [−k∗, k∗]∩Z for some k∗ ∈ {0, . . . , n}. In
fact, we can rewrite the set P ∗n = P ∗n(λε) as follows:

(2.18) P ∗n(λε) := {j ∈ [−n, n] ∩ Z : f (λε cj) > 1} = {j ∈ [−n, n] ∩ Z : cj > C/λε} ,

where6 C := f−1(1). Note that for all n such that cn < C/λε the set P ∗n(λε) is independent of n.
Therefore, we will assume that n is large enough and write P ∗(λε) from now on (since our goal is
to take the limit as n→∞).

As we mentioned before, P ∗ = [−k∗, k∗]∩Z where k∗ depends on λε, but not on n. The positive
integer k∗ is characterized by the property

(2.19) λε ∈
(
C
ck∗

,
C

ck∗+1

]
.

With this in mind, we rewrite Fn in (2.15) as

Fn(λε) = eV (P ∗, λε)
∑
P⊂Pn

eV (P, λε)−V (P ∗, λε).

In order to take the limit as n→∞ in the previous expression, and to conclude that Λε(ε
−1λ)

is finite, we must estimate the difference V (P, λε)− V (P ∗, λε). Given the construction of P ∗, we
may always bound it by 0. Unfortunately, this gives rise to the following naive estimate

Fn(λε) ≤ eV (P ∗, λε)
∑
P⊂Pn

1 = eV (P ∗, λε) 22n+1

which is insufficient. For this reason, a careful analysis of the function

(2.20) G(P ) := V (P, λε)− V (P ∗, λε)

is necessary. We present this result in the following proposition.

Proposition 2.8. Fix b > 0. Then, for any subset P ⊂ [−n, n] ∩ Z the following estimate holds

(2.21) G(P ) ≤ − b
2
·
∑
j∈P̂

∣∣|j| − k∗∣∣.
where P̂ := (P∆P ∗)− {± (k∗ + 1)}, and ∆ denotes the symmetric difference between two sets.

Remark 2.9. Throughout the proof of Proposition 2.8, and in the rest of the paper, we will assume
that cj = e−b|j| for the sake of conciseness. It is easy to see that one can adapt our arguments for

the case cj = e−b|j|
2
.

6We can invert f since it is monotone increasing. The constant C can be explicitly computed, and it is approxi-
mately equal to 0.5264.
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Proof. First of all, by (2.16) and (2.20), we have

G(P ) =
∑
j∈P

log (f(λεcj)) −
∑
j∈P ∗

log (f(λεcj))(2.22)

=
∑

j∈P−P ∗
log (f(λεcj)) −

∑
j∈P ∗−P

log (f(λεcj))

for any P ⊂ Pn, with f as in (2.17). We reduce the proof of (2.21) to three different cases: when
P = P ∗ ∪ A, with A ∩ P ∗ = ∅; when P = P ∗ − B, with B ⊆ P ∗; and finally, a mixed case when
P = (P ∗ ∪A)−B, with A and B as in the previous cases.

Case 1: Let us start with P = P ∗ ∪A, with A ∩ P ∗ = ∅. By (2.22), we have that

(2.23) G(P ) =
∑
j∈A

log (f(λεcj)) =
∑
j∈A

(
1

2
log π + log(λε cj) +

λ2
ε c

2
j

4

)
.

Let us study each of the terms in the previous expression. By (2.19),

(2.24)
C2

4
e−2b(|j|−k∗) =

C2

4

c2
j

c2
k∗
<
λ2
ε c

2
j

4
≤ C

2

4

c2
j

c2
k∗+1

=
C2

4
e−2b(|j|−k∗−1).

Similarly, we have that

−b(|j| − k∗) + log C = log

(
C cj
ck∗

)
≤ log (λεcj) ≤ log

(
C cj
ck∗+1

)
= −b(|j| − k∗ − 1) + log C.(2.25)

Applying (2.24) and (2.25) to (2.23), we obtain

G(P ) ≤ |A|
2

log π +
∑
j∈A

(
−b(|j| − k∗ − 1) + log C +

C2

4
e−2b(|j|−k∗−1)

)

≤ |A|
(

1

2
log π + log C +

C2

4

)
−
∑
j∈A

b(|j| − k∗ − 1) = −b
∑
j∈A

(|j| − k∗ − 1),

where the last equality follows by the definition of C. In the second inequality we used that, since

j ∈ A and A ∩ P ∗ = ∅, then |j| > k∗ and hence, the right-hand side of (2.24) is bounded by C
2

4 .
Using the fact that |j| > k∗ once more, we can rewrite the previous estimate as

G(P ) ≤ −b
∑
j∈A

(∣∣|j| − k∗∣∣− 1
)
.

Finally, noting that

(2.26)
∣∣|j| − k∗∣∣− 1 ≥ 1

2

∣∣|j| − k∗∣∣,
for all j ∈ Z− {± (k∗ − 1),± k∗,± (k∗ + 1)}, we obtain

(2.27) G(P ) ≤ − b
2

∑
j∈P̂

∣∣|j| − k∗∣∣,
where in this case P̂ = A− {± (k∗ + 1)}. This concludes the proof of (2.21) for the first case.

Case 2: Now, let us assume that P = P ∗−B, with B ⊆ P ∗. Notice that this implies that |j| ≤ k∗,
for any j ∈ B. In this case, (2.22) becomes

(2.28) G(P ) = −
∑
j∈B

log (f(λεcj)) = −
∑
j∈B

(
1

2
log π + log(λε cj) +

λ2
ε c

2
j

4

)
.
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Using (2.24) and (2.25) again, we have that

G(P ) ≤ −|B|
2

log π −
∑
j∈B

(
−b(|j| − k∗) + log C +

C2

4
e−2b(|j|−k∗)

)

≤ −|B|
(

1

2
log π + log C +

C2

4

)
− b

∑
j∈B

∣∣|j| − k∗∣∣ = −b
∑
j∈B

∣∣|j| − k∗∣∣.
Here, we have used that |j| ≤ k∗, for any j ∈ B, and the definition of C. Noting that for this case

P̂ = B, we can conclude

(2.29) G(P ) ≤ − b
2

∑
j∈B

∣∣|j| − k∗∣∣ = − b
2

∑
j∈P̂

∣∣|j| − k∗∣∣,
as we wanted to prove.

Case 3: Finally, for the mixed case when P = (P ∗ ∪A) − B, with A ∩ P ∗ = ∅ and B ⊆ P ∗, the
expression in (2.22) tells us that

(2.30) G(P ) =
∑
j∈A

log (f(λεcj))−
∑
j∈B

log (f(λεcj)) .

Hence, combining (2.23) and (2.27) with (2.28) and (2.29), the right-hand side of (2.30) can be
bounded by

(2.31) G(P ) ≤ − b
2

∑
j∈A−{± (k∗+1)}

∣∣|j| − k∗∣∣− b

2

∑
j∈B

∣∣|j| − k∗∣∣ = − b
2

∑
j∈P̂

∣∣|j| − k∗∣∣,
where in this case P̂ = (A ∪B)− {± (k∗ + 1)}. This concludes the proof of Proposition 2.8. �

Based on this result, it is natural to introduce the quantity

(2.32) ‖P‖ :=
∑
j∈P̂

∣∣|j| − k∗∣∣,
for each subset P ⊂ [−n, n] ∩ Z, where P̂ := (P∆P ∗)− {± (k∗ + 1)}, with the convention that the
sum over the empty set is zero. Back to our main problem, Proposition 2.8 allows us to estimate
Fn in (2.15) as follows:

Fn(λε) = eV (P ∗, λε)
∑
P⊂Pn

eG(P ) ≤ eV (P ∗, λε)
∑
P⊂Pn

e−
b
2
‖P‖.

Hence, our next objective is to show that the latter sum is bounded uniformly on n and λε, i.e.

(2.33)
∑
P⊂Pn

e−
b
2
‖P‖ .b 1

where the implicit constant is independent of λε and n. In order to do so, we rewrite this sum as
follows:

(2.34)
∑
P⊂Pn

e−
b
2
‖P‖ ≤

∞∑
m=0

e−
b
2
m |{P ⊆ [−n, n] ∩ Z : ‖P‖ = m}|.

It is easy to see that 0 ≤ ‖P‖ ≤ (2n+ 1)n. Therefore, the sum on the right-hand side of (2.34)
will always be finite since many level sets are empty. The next step is to estimate how many subsets
P ⊆ [−n, n] ∩ Z satisfy ‖P‖ = m.
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Lemma 2.10. The cardinality of the level sets of ‖·‖, as defined in (2.32), satisfies

(2.35) |{P ⊆ [−n, n] ∩ Z | ‖P‖ = m}| ≤ p(m) 4
√

8m+1,

where p(m) is the number of partitions of m.

Proof. Fix m ∈ N0. We will bound the left-hand side of (2.35) by counting the iterations of an
algorithm whose output will include all the possible subsets P ⊆ [−n, n]∩Z such that ‖P‖ = m. As
in the proof of Proposition 2.8, it will be convenient to use the characterization of P as (P ∗ ∪A)−B,

with A ∩ P ∗ = ∅ and B ⊆ P ∗. Recall that in this case, P̂ is given by (A ∪B)− {± (k∗ + 1)}.

(1) Step 1: We write m =
∑M

j=1 aj for integers aj ≥ 1, and a certain M ∈ N0.

(2) Step 2: For each aj from Step 1, we choose one element j ∈ [−n, n] ∩ Z among k∗ − aj ,
k∗ + aj , −k∗ − aj , or −k∗ + aj . If |j| ≤ k∗, we add it to B. Otherwise, we add it to A.

(3) Step 3: We add any elements in {± (k∗ + 1)} to our set P .

Since there are p(m) possible options in Step 1, and for each aj in Step 2, there are 4 available
choices, we have that the number of possible sets P that can be constructed with this algorithm
is bounded by p(m) 4M+1. The last step to conclude (2.35) is to estimate M . Given Step 2, there

can be at most 4 possible repetitions of each aj in
∑M

j=1 aj . Therefore,

m =
M∑
j=1

aj ≥ 4 ·
M/4∑
j=1

j =
M

2

(
M

4
+ 1

)
≥ M2

8
.

As a consequence, M ≤
√

8m and the result follows. �

By (2.34) and Lemma 2.10, we have that∑
P⊂Pn

e−
b
2
‖P‖ ≤

∞∑
m=0

e−
b
2
m p(m) 4

√
8m+1,

where p(m) is the number of partitions of m. Notice that the right-hand side of the previous
expression is independent of λε and n. By Theorem 6.3 in [3],

p(m) . exp

(
π

√
2

3

√
m

)
.

Consequently, in order to establish the uniform upper bound in (2.33), it is enough to prove that
the series

∞∑
m=0

exp

(
− b

2
m+ π

√
2

3

√
m+ log(4)

(√
8m+ 1

))
converges, which follows easily by the root test.

Finally, we are ready to compute the limit in (2.11):

lim
ε→0+

εΛε(ε
−1 λ) ≤ lim

ε→0+
ε lim
n→∞

logFn(λε)

= lim
ε→0+

ε V (P ∗(λε), λε) + lim
ε→0+

ε lim
n→∞

log

( ∑
P⊂Pn

eG(P )

)
.

The latter limit is zero given that the sum is uniformly bounded on λε and n by Proposition 2.8
and Lemma 2.10. Therefore, we only need to compute the limit that corresponds to V . First, note
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that |P ∗| = 2 k∗ + 1. Using (2.19) and the exponential decay of the ck we can estimate k∗ in terms
of λε:

C ebk∗ < λε ≤ C ebk
∗+b =⇒ b k∗ ∼ log(λε).

Then, using (2.16), we have:

V (P ∗(λε), λε)−
λ2
ε

4

∑
|j|≤k∗

c2
j = (2k∗ + 1) log(λε) +

2k∗ + 1

2
log(π) +

∑
|j|≤k∗

log(cj)

.b [log(λε)]
2 −

∑
|j|≤k∗

b |j| .b [log(λε)]
2.

As a consequence,

(2.36) lim
ε→0+

εΛε(ε
−1 λ) ≤ lim

ε→0+
ε V (P ∗(λε), λε) = lim

ε→0+
ε
λ2
ε

4

∑
|j|≤k∗

c2
j =

λ2

4

∑
j∈Z

c2
j .

Here we used that λε = ε−1/2λ, as well as the fact that k∗ ∼b log(λε)→∞ as ε→ 0+.

Note that the upper bound for the limit in (2.36) is due to the fact that we estimated from
above P(Xk > 0) ≤ 1 in (2.14). Similarly, one can estimate from below P(Xk > 0) ≥ 1/2, since Xk

is a normal random variable with positive mean. This leads to a new definition of Fn(λε) in (2.15),
given by

Fn(λε) =
∏
|k|≤n

(
1 +

√
π

2
λε ck exp

(
λ2
ε c

2
k

4

))
.

Redefining the function f in (2.17) as f(r) :=
√
π

2 r e
r2/4, we can repeat the same steps as above,

which yield the lower bound

(2.37)
λ2

4

∑
j∈Z

c2
j = lim

ε→0+
ε V (P ∗(λε), λε) = lim

ε→0+
ε lim
n→∞

logFn(λε) ≤ lim
ε→0+

εΛε(ε
−1 λ).

Since the lower and the upper bounds coincide, we can conclude that

(2.38) Λ(λ) := lim
ε→0+

εΛε(ε
−1λ) =

λ2

4

∑
j∈Z

c2
j .

Hence, the function Λ(·) is clearly well-defined, takes values in R, and is differentiable, and therefore
Theorem 2.5 applies. Using the definition of the Fenchel-Legendre transform, it is easy to see that

(2.39) Λ∗(z) := sup
λ∈R

(λ z − Λ(λ)) =
z2∑
j∈Z c

2
j

.

Combining (2.8) and (2.13), we can conclude that

lim sup
ε→0+

ε logP
(

sup
x∈T
|u(t, x)| ≥ z0ε

−1/2

)
≤ lim sup

ε→0+
ε logP

(∑
k∈Z

ckRk ≥ z0ε
−1/2

)
≤ − z2

0∑
j∈Z c

2
j

.

This establishes (2.3) for α = 1 and I(z) = z2∑
k∈Z c

2
k
, and concludes the proof of Proposition 2.1.
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3. Large Deviations Principle for NLS: subcritical times

3.1. The linear approximation. Consider the NLS equation with a cubic nonlinearity:

(3.1)

{
i∂tu+ ∆u = ε2|u|2 u
u(0, x) =

∑
k∈Z ckηke

ikx

In order to study this equation, we write it as a system of equations for the Fourier coefficients
of the solution u. Let v(t, x) := eit∆u(t, x) and write

(3.2) v(t, x) =
∑
k∈Z

vk(t) e
ikx

so that vk(t) satisfies

(3.3)

{
i∂tvk = ε2

∑
k=k1−k2+k3

vk1vk2vk3 e
−itΩ

vk(0) = ckηk

where

(3.4) Ω = |k1|2 − |k2|2 + |k3|2 − |k|2.

We introduce the Fourier-Lebesgue spaces FLs,p = FLs,p(T) of functions f : T→ C with Fourier
coefficients (fk)k∈Z given by the norm

(3.5) ‖f‖FLs,p = ‖〈k〉sfk‖`pk .

In this section we will restrict ourselves to the space FL0,1.

It will be convenient to have explicit control of the solution to (3.1) in the space FL0,1 for small
times. To that end, we have the following local-wellposedness result:

Proposition 3.1. Let u0 ∈ FL0,1 and

(3.6) Tε ∼ ε−2 ‖u0‖−2
FL0,1 .

For times 0 ≤ t ≤ Tε, there is a unique solution to the IVP given by (3.1) which lives in FL0,1.
Moreover, there exists some positive constant C (independent of ε, t and u0) such that for all times
0 ≤ t ≤ Tε the following inequality holds:

(3.7)
∥∥u(t)− e−it∆u0

∥∥
FL0,1 ≤ C ε2 t

(∥∥u− e−it∆u0

∥∥3

L∞([0,t],FL0,1)
+ ‖u0‖3FL0,1

)
.

Proof. Using (3.3), we have that

(3.8) vk(t) = vk(0)− i ε2

∫ t

0

∑
k=k1−k2+k3

(vk1vk2vk3)(s) e−isΩ ds

and therefore

‖v(t)‖FL0,1 ≤‖v(0)‖FL0,1 + ε2
∑
k∈Z

∫ t

0

∣∣∣ ∑
k=k1−k2+k3

(vk1vk2vk3)(s)
∣∣∣ ds

≤‖v(0)‖FL0,1 + ε2
∑

k1,k2,k3

∫ t

0

∣∣∣(vk1vk2vk3)(s)
∣∣∣ ds

≤‖v(0)‖FL0,1 + ε2

∫ t

0
‖v(s)‖3FL0,1 ds.

(3.9)
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Consequently,

(3.10) sup
0≤t≤T

‖v(t)‖FL0,1 ≤ ‖v(0)‖FL0,1 + ε2 T sup
0≤t≤T

‖v(t)‖3FL0,1 .

Similarly

(3.11) sup
0≤t≤T

‖v(t)− w(t)‖FL0,1 ≤ ε2 T sup
0≤t≤T

‖v(t)− w(t)‖FL0,1 (‖v(t)‖2FL0,1 + ‖w(t)‖2FL0,1).

A standard argument using a contraction mapping theorem yields existence, uniqueness and the
local time of existence (3.6). Note that ‖u‖FL0,1 = ‖v‖FL0,1 so all these results apply to u(t, x).

Finally, we can repeat the argument starting with (3.8) to find

‖v(t)− v(0)‖FL0,1 ≤ ε2 t ‖v‖3L∞([0,t],FL0,1)

≤ C ε2 t
(
‖v − v(0)‖3L∞([0,t],FL0,1) + ‖v(0)‖3FL0,1

)
.

(3.12)

We use the fact that v = eit∆u and that
∥∥eit∆f∥∥FL0,1 = ‖f‖FL0,1 to finish the proof of (3.7). �

Remark 3.2. We note that in our case u0 ∈ ∩s≥0H
s(T) almost surely. Because of this, the solution

in Proposition 3.1 is actually global. In fact, the NLS initial value problem (3.1) is globally well-
posed in Hs, s ≥ 0, [6]. This is a consequence of the fact that via the L4 Strichartz estimates
one can prove local well-posedness in a small interval of time that is inversely proportional to the
mass of the initial data, and then iterate using the conservation of mass itself. Our initial data
a.s. lives there, so the solution u(t) to (3.1) is well-defined and exists for all times. Moreover,
H1(T) ⊂ FL0,1(T) thanks to the Cauchy-Schwarz inequality:

‖u‖FL0,1 =
∑
k

|uk| ≤

(∑
k

〈k〉2|uk|2
)1/2

·

(∑
k

1

〈k〉2

)1/2

∼ ‖u‖H1 .

We want to use Proposition 3.1 to show that as long as our initial datum is not too large, the
difference between the solution to the nonlinear equation and the linear approximation remains
smaller than the initial datum itself. More precisely, we have that

Corollary 3.3. Fix γ ∈ (0, 1], c1, c2 > 0 and

(3.13) 0 < δ <
γ

4
.

Then there exists ε0 = ε0(δ, γ, c1, c2) such that for all ε < ε0 the following holds: if T = c1 ε
−1+γ

and ‖u0‖FL0,1 < c2 ε
−1/2−δ then∥∥u− e−it∆u0

∥∥
L∞([0,T ],FL0,1)

< ε−1/2+δ.

Proof. Suppose that ‖u0‖FL0,1 < c2 ε
−1/2−δ. Then (3.6) and (3.13) guarantee that

Tε ≥ c−2
2 ε−1+2δ � c1ε

−1+γ = T

if ε < ε0 is small enough.

Let us further reduce ε0 (if necessary) so that the following condition is true for all ε < ε0:

(3.14) C c1

(
ε−1/2+γ+3δ + c3

2 ε
−1/2+γ−3δ

)
≤ 1

2
ε−1/2+δ,

where C is the positive constant from (3.7). Note that this is possible thanks to (3.13).
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For ε ≤ ε0, let us define

τ := sup
{
t ∈ [0, T ] |

∥∥u− e−is∆u0

∥∥
L∞([0,t],FL0,1)

< ε−1/2+δ
}
.

We would like to show that τ = T thanks to a bootstrap argument. For t ≤ τ , (3.7) yields:∥∥u(t)− e−it∆u0

∥∥
FL0,1 ≤ C ε2 T

(
ε−3/2+3δ + c3

2 ε
−3/2−3δ

)
≤ C c1 ε

1+γ
(
ε−3/2+3δ + c3

2 ε
−3/2−3δ

)
≤ C c1

(
ε−1/2+γ+3δ + c3

2 ε
−1/2+γ−3δ

)
.

(3.15)

This together with (3.14) shows that τ = T . �

3.2. Proof of Theorem 1.1 for subcritical times. Using these tools, we are ready to give a
proof of the LDP for subcritical times t � ε−1, which is essentially an extension of the LDP for
the linear flow.

Let us fix a time t = c1ε
−1+γ � ε−1 for some γ ∈ (0, 1] and z0 > 0. We want to study the limit

(3.16) lim
ε→0+

ε logP
(

sup
x∈T
|u(t, x)| > z0 ε

−1/2

)
.

Let Dε denote the event
{

supx∈T |u(t, x)| > z0 ε
−1/2

}
. Fix δ satisfying (3.13), and let us consider

the set Aε of initial data u0 such that ‖u0‖FL0,1 > ε−1/2−δ. Note that t� Tε in (3.6) in this case,
but ‖u(t)‖L∞x is still a.s. finite thanks to Remark 3.2.

First we derive an upper bound. By the triangle inequality and the embedding FL0,1 ⊂ L∞ we
have that Dε ⊂ D+

ε where

D+
ε :=

{∥∥e−it∆u0

∥∥
L∞x

+
∥∥u(t)− e−it∆u0

∥∥
FL0,1 > z0 ε

−1/2
}
.

Finally, let us define the event

Bε :=
{∥∥u(t)− e−it∆u0

∥∥
FL0,1 ≤ z0 ε

−1/2+δ
}
.

Then we have that

(3.17) P(Dε) ≤ P(D+
ε ∩ Bε) + P(D+

ε ∩ Bcε)

Let us study the first term in (3.17). We have that

P(D+
ε ∩ Bε) ≤ P

(∥∥e−it∆u0

∥∥
L∞x

> z0(ε−1/2 − ε−1/2+δ)
)
.

By Proposition 2.1,

lim
ε→0+

ε logP
(∥∥e−it∆u0

∥∥
L∞x

> z0(ε−1/2 − ε−1/2+δ)
)

= − z2
0∑

k∈Z c
2
k

.

Finally, we consider the second term in (3.17). By Corollary 3.3, if ε < ε0 is small enough we
can arrange:

P(D+
ε ∩ Bcε) ≤ P(Bcε) ≤ P

(
‖u0‖FL0,1 ≥ ε−1/2−δ

)
= P(Aε).

Note that we can write ‖u0‖FL0,1 =
∑

k∈Z ckRk as we did in (2.9). By Theorem 2.5 and (2.13), we

have that logP(Aε) ∼ −ε−1−2δ, and therefore the second term in the right-hand side of (3.17) is
much smaller than the first one for ε small enough. This concludes the proof of the upper bound.
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Next let us prove a lower bound. First of all note that D−ε ⊂ Dε if we define

D−ε :=
{∥∥e−it∆u0

∥∥
L∞x
−
∥∥u(t)− e−it∆u0

∥∥
FL0,1 > z0 ε

−1/2
}
.

Therefore, we have that

P(Dε) ≥ P(D−ε ∩ Bε) ≥ P
({∥∥e−it∆u0

∥∥
L∞x

> z0(ε−1/2 + ε−1/2+δ)
}
∩ Bε

)
≥ P

(∥∥e−it∆u0

∥∥
L∞x

> z0(ε−1/2 + ε−1/2+δ)
)
− P(Bcε)

(3.18)

By Proposition 2.1, we have that

lim
ε→0+

ε logP
(∥∥e−it∆u0

∥∥
L∞x

> z0(ε−1/2 + ε−1/2+δ)
)

= − z2
0∑

k∈Z c
2
k

.

This describes the asymptotic behavior of the first summand in (3.18). By Corollary 3.3, if ε < ε0

the second summand satisfies

P(Bcε) ≤ P
(
‖u0‖FL0,1 ≥ ε−1/2−δ

)
= P(Aε)

which is a lower order term by the same argument as in the upper bound. This concludes the proof
of the theorem.

4. LPD for NLS: critical times

4.1. The resonant approximation. In order to prove Theorem 1.1 for times of order O(ε−1), the
linear approximation is not enough and we must introduce an approximation that better captures
the dynamics of the nonlinear equation over such times. This can be achieved by the resonant
approximation.

We start by writing the solution to (3.1) in Fourier series:

(4.1) u(t, x) =
∑
k∈Z

uk(t) e
ikx .

Then we derive equations for the Fourier coefficients:

(4.2) i∂tuk − |k|2uk = ε2
∑

k=k1−k2+k3

uk1uk2uk3 .

As in the linear case, we let v(t, x) := eit∆u(t, x) so that

(4.3) i∂tvk = ε2
∑

k=k1−k2+k3

vk1vk2vk3e
−itΩ

for Ω as in (3.4). We would like to approximate this system by the resonant system, which consists
of removing any terms on the right-hand side of (4.3) for which Ω 6= 0.

By imposing k = k1 − k2 + k3 and Ω = 0 one easily sees that we must have

k1 = k and k2 = k3, or k3 = k and k1 = k2.

We can remove most of those terms by setting w(t, x) = e−2itε2Mv(t, x) where

(4.4) M =
∑
k∈Z
|vk(t)|2 =

∑
k∈Z
|uk(t)|2

which is conserved. The remaining system is

(4.5) i∂twk = −ε2 |wk|2wk + ε2
∑

k=k1−k2+k3,Ω6=0

wk1wk2wk3e
−itΩ.
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The resonant approximation is given by a(t, x) =
∑

k∈Z ak(t) e
ikx such that

(4.6)

{
i∂tak = −ε2 |ak|2ak,
ak(0) = ckηk.

It turns out that one can explicitly solve this system after noting that ∂t|ak(t)|2 = 0. As a
consequence |ak(t)|2 = c2

k|ηk|2 for all times t and the system becomes linear. Direct integration
then yields:

(4.7) a(t, x) =
∑
k∈Z

ckηk e
ikx+itε2 c2k|ηk|

2
.

As a final step, one can undo the transformations we previously did and obtain

(4.8) uapp(t, x) = e2itε2M
∑
k∈Z

ckηk e
ikx+iε2t c2k|ηk|

2−itk2 .

Thanks to the rapid decay of the ck, it is easy to see that uapp is well-defined globally in t almost
surely.

Our first result guarantees that the uapp enjoys the same LDP as the linear flow:

Proposition 4.1. Fix z0 > 0. For t > 0 (which may depend on ε), we have that

(4.9) lim
ε→0+

ε logP
(

sup
x∈T
|uapp(t, x)| > z0 ε

−1/2

)
= − z2

0∑
k∈Z c

2
k

.

Before presenting the proof of Proposition 4.1, we need to establish a lemma about complex
Gaussian random variables. In the proof of Proposition 2.1, we used that the solution to the linear
equation is given by an infinite sum of complex Gaussian random variables to establish the LDP.
For the resonant approximation, it is not clear a priori that this still holds, since in (4.8) the
complex exponential is no longer deterministic. Lemma 4.2 shows that this transformation actually
preserves the distribution of ηk.

Lemma 4.2. Let η be a standard complex Gaussian and a ∈ R. Then, η eia |η|
2

has again a standard
complex Gaussian distribution.

Proof. Let us recall that, since η is a standard complex Gaussian, we can write η as Reiϕ, where
R ∼ Rayleigh(1/

√
2) and ϕ ∼ U [0, 2π], with R and ϕ independent of each other (see [2], Section

2.7). Using this characterization, we have that

η eia |η|
2

= Reiϕ+iaR2
= Reiϕ̃(R),

where ϕ̃(R) := ϕ+ aR2 (mod 2π). Hence, it suffices to show that ϕ̃(R) ∼ U [0, 2π], and that ϕ̃(R)
and R are independent to conclude the desired result.

To show the first statement, let us compute the characteristic function of ϕ̃(R): for ξ ∈ R, we
have

E
[
eiξϕ̃(R)

]
= E

[
E
[
eiξϕ̃(R)

∣∣R]] = E [h(R)] ,

where h(r) = E
[
eiξϕ̃(r)

]
, since R and ϕ are independent. Now, using the translation invariance of

the uniform distribution, it is easy to see that ϕ̃(r) ∼ U [0, 2π], for any r ∈ R, and hence, h(r) is

actually constant and equal to E
[
eiξϕ

]
. This gives us that E

[
eiξϕ̃(R)

]
= E

[
eiξϕ

]
, which yields the

desired result, since the characteristic function determines the distribution.
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To show that ϕ̃(R) and R are independent, we will also use the characteristic function method:
for ξ1, ξ2 ∈ R, we have

E
[
eiξ1ϕ̃(R)+iξ2R

]
= E

[
E
[
eiξ1ϕ̃(R)+iξ2R

∣∣R]] = E
[
E
[
eiξ1ϕ̃(R)

∣∣R] eiξ2R]
= E

[
E
[
eiξ1ϕ

]
eiξ2R

]
= E

[
eiξ1ϕ

]
E
[
eiξ2R

]
,

where in the second equality we have used the “take out what is known” property of conditional
expectation. This implies that ϕ̃(R) and R are independent, since its joint characteristic function
factorizes. This completes the proof of Lemma 4.2. �

Proof of Proposition 4.1. As in the proof of Proposition 2.1, we will compute the limit on the
left-hand side of (4.9) by deriving upper and lower bounds, and checking that they are equal.

Let us start with the upper bound. As in the proof of Lemma 4.2, we can rewrite ηk as Rke
iϕk .

Using the same strategy as in (2.7), we have

sup
x∈T
|uapp(t, x)|2 =

∑
k∈Z

(ckRk)
2 + sup

x∈T

∗∑
j 6=k

cjckRjRk cos(ψj − ψk)

≤
∑
k∈Z

(ckRk)
2 +

∗∑
j 6=k

cjckRjRk =

(∑
k∈Z

ckRk

)2

,

where
∑∗ indicates a sum in all j, k ∈ Z, and ψk(t, x) = ϕk+kx+ε2t c2

kR
2
k−k2t. Using this bound,

we can estimate from above the probability in (4.9) to get

(4.10) P
(

sup
x∈T
|uapp(t, x)| ≥ z0ε

−1/2

)
≤ P

(∑
k∈Z

ckRk ≥ z0ε
−1/2

)
.

Notice that the right-hand side of (4.10) is the same as the one in (2.8). Hence, as we did in
Section 2.2, we can apply the Gärtner-Ellis theorem to conclude that

(4.11)

lim sup
ε→0+

ε logP
(

sup
x∈T
|uapp(t, x)| ≥ z0ε

−1/2

)
≤ lim sup

ε→0+
ε logP

(∑
k∈Z

ckRk ≥ z0ε
−1/2

)
≤ − z2

0∑
j∈Z c

2
j

.

For the lower bound, we start by noting that, thanks to (4.8) and Lemma 4.2, for each (t, x) ∈
R × T fixed, uapp(t, x) has the same distribution as the solution to the linear equation in (2.1),
e−it∆u0(x). That is, uapp(t, x) is equal to the sum of independent complex Gaussian random

variables ukapp(t, x), for k ∈ Z, with

E
[
ukapp(t, x)

]
= E

[
ukapp(t, x)ukapp(t, x)

]
= 0 and E

[
ukapp(t, x)ukapp(t, x)

]
= c2

k,

and hence, uapp(t, x) has a complex normal distribution with

E [uapp(t, x)] = E [uapp(t, x)uapp(t, x)] = 0 and E
[
uapp(t, x)uapp(t, x)

]
=
∑
k∈Z

c2
k.
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Then, using the same arguments as in Section 2.1, we obtain

(4.12)

lim inf
ε→0+

ε logP
(

sup
x∈T
|uapp(t, x)| ≥ z0ε

−1/2

)
≥ lim inf

ε→0+
ε logP

(
|uapp(t, 0)| ≥ z0ε

−1/2
)

= − z2
0∑

k∈Z c
2
k

.

Finally, combining (4.11) and (4.12), the expression for the limit in (4.9) holds, which concludes
the proof of Proposition 4.1. �

Remark 4.3. Note that (4.9) holds even if t = O(ε−1), which is the timescale we are interested in:
for the upper bound, (4.10) provides a uniform bound on time and space; and for the lower bound,
uapp(t, x) is at stationarity and hence, it has the same distribution for all (t, x) ∈ R× T.

4.2. Bounds on the error. Our next goal is to obtain good estimates on the error when we
approximate the solution u to (3.1) by the resonant approximation (4.8). To do so, we will work
in the Fourier-Lebesgue space FL2,1 defined in (3.5), which is given by the norm:

(4.13) ‖f‖FL2,1 =
∑
k∈Z
〈k〉2|fk|.

Our first result is an analogue to Proposition 3.1 in this new space:

Proposition 4.4. If u0 ∈ FL2,1, then there exists Tε > 0 such that the unique solution to the IVP
(3.1) lives in FL2,1 for all times 0 ≤ t ≤ Tε. Moreover

(4.14) Tε ∼ ε−2 ‖u0‖−2
FL2,1 .

Proof. Using (4.3), we have that

(4.15) vk(t) = vk(0)− iε2

∫ t

0

∑
k=k1−k2+k3

(vk1vk2vk3)(s) e−isΩ ds

and therefore

‖v(t)‖FL2,1 ≤‖v(0)‖FL2,1 + ε2
∑
k∈Z
〈k〉2

∫ t

0

∣∣∣ ∑
k=k1−k2+k3

(vk1vk2vk3)(s)
∣∣∣ ds

≤‖v(0)‖FL2,1 + C ε2
∑

k1,k2,k3

3∏
j=1

〈kj〉2
∫ t

0

∣∣∣(vk1vk2vk3)(s)
∣∣∣ ds

≤‖v(0)‖FL2,1 + C ε2

∫ t

0
‖v(s)‖3FL2,1 ds,

(4.16)

after using the fact that 〈k〉2 .
∏3
j=1〈kj〉2 for k = k1 − k2 + k3. The rest of the proof is similar to

that of Proposition 3.1. �

Remark 4.5. Following Remark 3.2, the solution in Proposition 4.4 is global. Note that H3(T) ⊂
FL2,1.

As a consequence, we have the following perturbation result:
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Corollary 4.6. Suppose that u(0), uapp(0) ∈ FL2,1 and that t ≤ Tε as in (4.14). Then there exists
some positive constant C (independent of ε, Tε and the initial data) such that for all times t ≤ Tε
the following inequality holds:

‖u(t)− uapp(t)‖FL2,1 ≤ ‖u(0)− uapp(0)‖FL2,1 + C ε4 t
(
‖u− uapp‖5L∞([0,t),FL2,1) + ‖uapp(0)‖5FL2,1

)
+ C ε2 t

(
‖u− uapp‖2L∞([0,t),FL2,1) + ‖uapp(0)‖2FL2,1

)
‖u− uapp‖L∞([0,t),FL2,1)(4.17)

+ C ε2
(
‖u− uapp‖3L∞([0,t),FL2,1) + ‖uapp(0)‖3FL2,1 + ‖u(0)‖3FL2,1

)
.

Proof. We subtract (4.6) from (4.5), and obtain

(4.18) i∂t(wk − ak) = ε2
(
|ak|2ak − |wk|2wk

)
+ ε2

∑
k=k1−k2+k3,Ω6=0

wk1wk2wk3e
−itΩ.

Integrating this equation, we find that

i [wk(t)− ak(t)] = i [wk(0)− ak(0)] + ε2

∫ t

0

(
|ak|2ak − |wk|2wk

)
(s) ds

+ ε2
∑

k=k1−k2+k3,Ω6=0

∫ t

0
(wk1wk2wk3)(s)e−isΩ ds.

(4.19)

We multiply this equation by 〈k〉2, take absolute values and sum in k ∈ Z. Next we estimate∑
k∈Z
〈k〉2

∣∣∣ ∫ t

0
(|ak|2ak−|wk|2wk) ds

∣∣∣ .∑
k∈Z
〈k〉2

∫ t

0

(
|ak|2 + |wk|2

)
|ak − wk| ds

.
∫ t

0

(
sup
k
|ak|2 + sup

k
|wk|2

)∑
k∈Z
〈k〉2|ak(s)− wk(s)| ds

.
∫ t

0

(
‖a(s)‖2FL2,1 + ‖w(s)‖2FL2,1

)
‖a(s)− w(s)‖FL2,1 ds

. t
(
‖a‖2L∞([0,t),FL2,1) + ‖w‖2L∞([0,t),FL2,1)

)
‖a− w‖L∞([0,t),FL2,1)

. t
(
‖a‖2L∞([0,t),FL2,1) + ‖w − a‖2L∞([0,t),FL2,1)

)
‖w − a‖L∞([0,t),FL2,1) .

Finally, we use the fact that

(4.20) ‖a(t)‖FL2,1 = ‖a(0)‖FL2,1 = ‖uapp(0)‖FL2,1

which follows by an explicit computation using (4.7) and (4.8), and we undo the transformations
that relate a to uapp and w to u (which leave the FL2,1-norm invariant). This accounts for the
third term in (4.17).

In order to get the other terms, we first integrate by parts

(4.21)

∫ t

0
wk1wk2wk3e

−isΩ ds = − 1

iΩ
wk1wk2wk3e

−isΩ
∣∣∣s=t
s=0

+
1

iΩ

∫ t

0
∂s (wk1wk2wk3) e−isΩ ds

The boundary term can be controlled as follows:

ε2
∑
k∈Z
〈k〉2

∣∣∣ ∑
k=k1−k2+k3,Ω6=0

1

Ω

[
(wk1wk2wk3)(t)e−itΩ − (wk1wk2wk3)(0)

] ∣∣∣
. ε2

∑
k1,k2,k3

3∏
j=1

〈kj〉2 |wkj (t)|+ ε2
∑

k1,k2,k3

3∏
j=1

〈kj〉2 |wkj (0)|



LARGE DEVIATIONS PRINCIPLE FOR THE CUBIC NLS EQUATION 25

. ε2
(
‖w(t)− a(t)‖3FL2,1 + ‖a(0)‖3FL2,1 + ‖w(0)‖3FL2,1

)
.

This gives rise to the fourth term in (4.17). Finally, let us consider the rightmost term in (4.21).
There are three cases depending on which term ∂s hits; we do one as an example:

ε2
∑
k∈Z
〈k〉2

∣∣∣ ∑
k=k1−k2+k3,Ω6=0

1

Ω

∫ t

0
(∂swk1)wk2wk3 e

−isΩ ds
∣∣∣

. ε2

∫ t

0

∑
k1,k2,k3

〈k2〉2|wk2(s)| 〈k3〉2|wk3(s)| 〈k1〉2|∂swk1(s)| ds

. ε2 t ‖w‖2L∞([0,t),FL2,1) ‖∂sw‖L∞([0,t),FL2,1) .

Finally, one can easily use (4.5) to show that

‖∂sw‖L∞([0,t),FL2,1) . ε
2 ‖w‖3L∞([0,t),FL2,1) .

A final step using the triangle inequality to bound the norm of w in terms of w−a and a (together
with (4.20)) yields the second term in (4.17). �

As an application of the estimates above, we present a bootstrap argument that allows us to
control the difference between the solution and our approximation.

Proposition 4.7. Fix δ ∈ (0, 1), d1, d2 > 0. Then there exists ε0 (depending on δ, d1 and d2) such

that the following holds for all ε ≤ ε0. If T = d1ε
−1 and ‖u(0)‖FL2,1 ≤ d2ε

−1/2, then

(i) we can extend the time where (4.17) is valid from Tε (in (4.14)) all the way to T ; and

(ii) we have the estimate

(4.22) ‖u− uapp‖L∞([0,T ],FL2,1) < ε−1/2+δ.

Proof. Step 1. First of all, note that (4.17) is valid for any time t such that u(t) ∈ FL2,1. The
choice of Tε guarantees that this condition is met, but it is not necessary as we will soon show. We
start by setting u(0) = uapp(0) as in (4.6). Next define

τ1 := sup{t ∈ [0, T ] | ‖u(t)− uapp(t)‖FL2,1 < ε−1/2+δ1},
for some small δ1 ∈ (0, 1). Note that if t ≤ τ1 then

‖u(t)‖FL2,1 ≤ ‖u(t)− uapp(t)‖FL2,1 + ‖uapp(t)‖FL2,1 < ε−1/2+δ1 + d2ε
−1/2,

and therefore u(t) ∈ FL2,1, which implies that (4.17) is valid for such times. Moreover, u(t) must
continue to live in FL2,1 thanks to the local well-posedness theory of Proposition 4.4.

If t ≤ min{τ1, λε
−1} for some small λ > 0 to be fixed later, then (4.17) yields

‖u(t)− uapp(t)‖FL2,1 ≤C λε3
(
ε−5/2+5δ1 + d5

2 ε
−5/2

)
+ C λε

(
ε−1+δ1 + d2

2ε
−1
)
ε−1/2+δ1

+ C ε2
(
ε−3/2+3δ1 + 2d3

2ε
−3/2

)
≤C d2

2 λ ε
−1/2+δ1 + C λ

(
ε−1/2+3δ1 + ε1/2+5δ1 + d5

2 ε
1/2
)

+ C
(
ε1/2+3δ1 + 2d3

2ε
1/2
)
.

If ε is small enough, it is easy to guarantee that

C λ
(
ε−1/2+3δ1 + ε1/2+5δ1 + d5

2 ε
1/2
)

+ C
(
ε1/2+3δ1 + 2d3

2ε
1/2
)
≤ 1

4
ε−1/2+δ1 .
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Note that for the term in ε1/2 to be controlled by a multiple of ε−1/2+δ1 we need to impose that
δ1 < 1. Making 4λ < (C d2

2)−1 (note that it does not depend on ε), one can make sure that

C d2
2 λ ε

−1/2+δ1 ≤ 1

4
ε−1/2+δ1 .

Therefore we have that if t ≤ min{τ1, λε
−1}, then

‖u(t)− uapp(t)‖FL2,1 ≤
1

2
ε−1/2+δ1 .

This finishes the bootstrap argument and shows that τ1 ≥ λε−1.

Therefore we know that

(4.23) ‖u(t)− uapp(t)‖FL2,1 < ε−1/2+δ1

must be true for all times 0 ≤ t ≤ λε−1.

Step 2. Let us fix t1 := λ ε−1, and restart our equation for times t > t1. We want to show that
we can take another step of size λ ε−1 and therefore reach times t2 = 2λ ε−1 while the error is still
not too large.

To do that, let

τ2 := sup{t ∈ [t1, T ] | ‖u(t)− uapp(t)‖FL2,1 < ε−1/2+δ2}

for some δ2 ∈ (0, δ1). First of all, note that we have

‖u(t1)‖FL2,1 ≤ ‖u(t1)− uapp(t1)‖FL2,1 + ‖uapp(t1)‖FL2,1 < ε−1/2+δ1 + ‖uapp(0)‖FL2,1

= ε−1/2+δ1 + d2ε
−1/2 = (εδ1 + d2) ε−1/2.

(4.24)

Therefore, u(t) is guaranteed to exist for some times past t1 by Proposition 4.4. Then consider
t1 ≤ t ≤ min{τ2, t1 + λ2ε

−1} for λ2 > 0 small enough (to be fixed soon) and let’s use a version of
(4.17) for initial data at t1 instead of zero:

||u(t)−uapp(t)||FL2,1 ≤ ‖u(t1)− uapp(t1)‖FL2,1

+ C ε4 (t− t1)
(
‖u− uapp‖5L∞([t1,t),FL2,1) + ‖uapp(t1)‖5FL2,1

)
+ C ε2 (t− t1)

(
‖u− uapp‖2L∞([t1,t),FL2,1) + ‖uapp(t1)‖2FL2,1

)
‖u− uapp‖L∞([t1,t),FL2,1)

+ C ε2
(
‖u− uapp‖3L∞([t1,t),FL2,1) + ‖uapp(t1)‖3FL2,1 + ‖u(t1)‖3FL2,1

)
.

Since δ2 < δ1, we can make ε small enough so that

(4.25) ε−1/2+δ1 ≤ 1

4
ε−1/2+δ2 .

For t1 ≤ t ≤ min{τ2, t1 + λ2ε
−1} we have that

‖u(t)− uapp(t)‖FL2,1 ≤
1

4
ε−1/2+δ2 + C ε3 λ2

(
ε−5/2+5δ2 + d5

2ε
−5/2

)
+ C ελ2

(
ε−1+2δ2 + d2

2ε
−1
)
ε−1/2+δ2

+ C ε2
(
ε−3/2+3δ2 + d3

2ε
−3/2 + (εδ1 + d2)3 ε−3/2

)
≤ 1

4
ε−1/2+δ2 + C λ2 d

2
2 ε
−1/2+δ2 + C λ2

(
ε1/2+5δ2 + d5

2ε
1/2 + ε−1/2+3δ2

)
+ C

(
ε1/2+3δ2 + d3

2ε
1/2 + (εδ1 + d2)3 ε1/2

)
.
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If ε is small enough, we can guarantee that

C λ2

(
ε1/2+5δ2 + d5

2ε
1/2 + ε−1/2+3δ2

)
+ C

(
ε1/2+3δ2 + d3

2ε
1/2 + (εδ1 + d2)3 ε1/2

)
<

1

4
ε−1/2+δ2 .

If 4λ2 < (C d2
2)−1 then,

C λ2 d
2
2 ε
−1/2+δ2 <

1

4
ε−1/2+δ2 .

Note that we can choose λ2 = λ. With this choice, we have that for t1 ≤ t ≤ min{τ2, t1 +λε−1} we
must have that

‖u(t)− uapp(t)‖FL2,1 <
3

4
ε−1/2+δ2 .

This bootstrap argument shows that τ2 ≥ t1 + λε−1 = 2λε−1. In particular, we have that

(4.26) ‖u(t)− uapp(t)‖FL2,1 < ε−1/2+δ2

must hold for all 0 ≤ t ≤ 2λε−2.

Step 3. We can repeat this procedure by choosing a decreasing sequence of positive small
numbers δn (and possibly making ε smaller at each step) to guarantee that

(4.27) ‖u(t)− uapp(t)‖FL2,1 < ε−1/2+δn

for all times 0 ≤ t ≤ nλε−1, where 4λ < (C d2
2)−1 is independent of ε. We can stop this procedure

after a finite number of steps once nλε−1 ≥ d1ε
−1 = T . This concludes the proof of the proposition.

Finally note that δ1 was free for us to choose as long as δ1 ∈ (0, 1), and then one could take any
decreasing sequence (no matter how slow). This shows that the only condition on δ in (4.22) is for
it to live in (0, 1). �

Remark 4.8. Note that Step 3 in the proof above could be improved by talking a number of steps
n that depends on ε. This would reduce the range of δ in Proposition 4.7 and allow us to reach
times T = O(ε−1 | log ε|). This small gain is due to condition (4.25), which limits the choice of n(ε)
as follows:

1 > δ1 − δn =
n−1∑
i=1

(δi − δi+1) ≥ log 4 · n

| log ε|
.

In this paper we will focus on times of the form ε−r, and so we will not pursue this further.

4.3. Proof of Theorem 1.1 for critical times. Fix z0 > 0 (independent of ε) and let t = d1ε
−1

for some fixed d1 > 0. We want to study the limit

(4.28) lim
ε→0+

ε logP
(

sup
x∈T
|u(t, x)| > z0 ε

−1/2

)
.

Note that the solution u exists at time t and ‖u(t)‖L∞x < ∞ almost surely thanks to Remark 4.5.

Let Dε be the event {supx∈T |u(t, x)| > z0 ε
−1/2}. Let us prove an upper bound for P(Dε) first.

Fix δ ∈ (0, 1). By the triangle inequality and the embedding FL2,1 ⊂ L∞ we have that Dε ⊂ D+
ε

where

D+
ε :=

{
‖uapp(t)‖L∞x + ‖u(t)− uapp(t)‖FL2,1 > z0 ε

−1/2
}
.

Let us also define the event

Bε :=
{
‖u(t)− uapp(t)‖FL2,1 ≤ z0 ε

−1/2+δ
}
.

Then we have that

(4.29) P(Dε) ≤ P(D+
ε ∩ Bε) + P(D+

ε ∩ Bcε).
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Let us study the first term in (4.29). We have that

P(D+
ε ∩ Bε) ≤ P

(
‖uapp(t)‖L∞x > z0(ε−1/2 − ε−1/2+δ)

)
.

By Proposition 4.1,

(4.30) lim
ε→0+

ε logP
(
‖uapp(t)‖L∞x > z0(ε−1/2 − ε−1/2+δ)

)
= − z2

0∑
k∈Z c

2
k

.

Next we consider the second term in (4.29). First note that 〈k〉2ck ≤ Cb
√
ck for some positive

constant Cb > 0 which only depends on b. Fix d2 > 0 large enough so that:

(4.31) d2
2 > 2 z2

0 C
2
b

∑
k∈Z ck∑
k∈Z c

2
k

.

We will justify this choice shortly.

By Proposition 4.7, if ε < ε0 = ε0(δ, d1, d2) is small enough we can arrange:

P(D+
ε ∩ Bcε) ≤ P(Bcε) ≤ P

(
‖u0‖FL2,1 ≥ d2 ε

−1/2
)
.

We claim that

(4.32) lim sup
ε→0+

ε logP
(
‖u0‖FL2,1 ≥ d2 ε

−1/2
)
≤ − d2

2

C2
b

∑
k∈Z ck

.

Given that 〈k〉2ck ≤ Cb
√
ck, the random variable ‖u0‖FL2,1 ≤ Cb ‖ũ0‖FL0,1 almost surely, where ũ0

has coefficients
√
ck. As a result we can apply Theorem 2.5 and (2.13) again to ũ0 (with b halved)

in order to prove (4.32).

Thanks to our choice of d2 in (4.31), (4.32) implies have that the first term in (4.29) is asymp-
totically larger than the second one. In particular, we can arrange

P(Dε) ≤ 2P
(
‖uapp(t)‖L∞x > z0(ε−1/2 − ε−1/2+δ)

)
for ε small enough, which concludes the proof of the upper bound in view of (4.30).

Finally, let us prove a lower bound. First of all note that D−ε ⊂ Dε if we define

D−ε :=
{
‖uapp(t)‖L∞x − ‖u(t)− uapp(t)‖FL2,1 > z0 ε

−1/2
}
.

Then we have that

P(Dε) ≥ P(D−ε ∩ Bε) ≥ P
({
‖uapp(t)‖L∞x > z0(ε−1/2 + ε−1/2+δ)

}
∩ Bε

)
≥ P

(
‖uapp(t)‖L∞x > z0(ε−1/2 + ε−1/2+δ)

)
− P(Bcε)

(4.33)

By Proposition 4.1, we have that

(4.34) lim
ε→0+

ε logP
(
‖uapp(t)‖L∞x > z0(ε−1/2 + ε−1/2+δ)

)
= − z2

0∑
k∈Z c

2
k

.

This describes the asymptotic behavior of the first summand in (4.33). By Proposition 4.7, if ε < ε0

the second summand satisfies

P(Bcε) ≤ P
(
‖u0‖FL2,1 ≥ d2ε

−1/2
)
.

Using (4.31) and arguing as in the proof of the upper bound, we conclude that this second term is
asymptotically smaller than the first term in (4.33). In particular, we can arrange

P(Dε) ≥
1

2
P
(
‖uapp(t)‖L∞x > z0(ε−1/2 + ε−1/2+δ)

)
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for ε small enough. Finally, (4.34) yields the desired asymptotic behavior and finishes the proof.

5. Most Likely Initial Data for a Rogue Wave

In the previous sections, we established the existence of a Large Deviations Principle for the
solution of the NLS equation. This allowed us to quantify the probability that we observe a rogue
wave: yet rare, rogue waves are actually plausible.

In this section, we change gears slightly and we ask ourselves the following question: “Con-
ditioned on the fact that we observe a rogue wave, what is the most likely initial datum that
generates such phenomenon?” For the sake of concreteness, we will focus on the solution of the
linear Schrödinger equation. (In Remark 5.9, we adapt our arguments for the linear equation to
the nonlinear equation (1.9) for critical and subcritical times.)

In order to answer this question, it is more convenient to take a different point of view regarding
the initial data. Let us consider the set

H = {(rk, φk)k∈Z | rk ≥ 0, φk ∈ [0, 2π)}.

It is easy to see that there is a correspondence between elements of H and initial data for the
solution u to the linear Schrödinger equation

(5.1)

{
i∂tu+ ∆u = 0, x ∈ T,
u(t, x |ϑ)|t=0 = u0(x |ϑ) =

∑
k∈Z ckrke

ikx+iφk ,

via

(5.2) ϑ := (rk, φk)k∈Z ∈ H 7→ u0(x |ϑ) =
∑
k∈Z

ckrke
ikx+iφk .

That is, we interpret the initial datum as a parameter for the solution of the linear Schrödinger
equation. The variable ϑ lives on the space7 of parameters H. To recover the probability framework
we presented in (1.8), we can endow H with the probability measure

(5.3) m :=×
k∈Z

mRk ×mϕk ,

where Rk ∼ Rayleigh(1/
√

2), ϕk ∼ U [0, 2π], mX is the probability measure of the random variable
X, and×denotes the countable product of probability measures, as in Section 1.5 from [20]. The

set of initial conditions that produce a rogue wave of height z(ε) := z0ε
−1/2 at time t > 0, with

z0 > 0 and ε→ 0+, corresponds to

(5.4) D(t, z(ε)) :=

{
ϑ ∈ H : sup

x∈T
|u (t, x |ϑ)| ≥ z0ε

−1/2

}
,

where u is the solution to the linear Schrödinger equation. By the definition of m in (5.3), it is
clear that m({ϑ}) = 0, for all ϑ ∈ H. Hence, the goal of the rest of the section is to give meaning
to the idea of “most likely initial datum” that generates a rogue wave.

7Notice that we use the notation (rk, φk), as opposed to (Rk, ϕk), to emphasize the fact that we are not seeing
the initial condition as random variables, but as parameters.
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5.1. Heuristic Approximation Using MLE Techniques. One possibility would be to say that
ϑ∗ ∈ D(t, z(ε)) is the most likely datum if it maximizes the density of the measure m, as it is
customary in Statistics when studying Maximum Likelihood Estimators (MLEs). The problem
with this approach is that it requires m to be absolutely continuous with respect to a reference
measure8. This idea cannot be applied directly to our problem, since H is an infinite-dimensional
vector space.

We propose a minimization problem, P, to characterize the most likely initial data for a rogue
wave. This pseudo-MLE problem comes motivated by studying the actual MLE problem when
we truncate the number of non-zero Fourier modes for the initial datum, and then we make this
number go to infinity. More concretely, let us define9

H(N) = {(rk, φk)|k|≤N | rk ≥ 0, φk ∈ [0, 2π)},

m(N) := ×
|k|≤N

mRk ×mϕk ,

and

D(N)(t, z(ε)) :=

{
ϑ ∈ H(N) : sup

x∈T
|u (t, x |ϑ)| ≥ z0ε

−1/2

}
.

For this truncated scenario, the measure m(N) has a density with respect to the Lebesgue
measure in (R2)2N+1. It is easy to see that the problem of maximizing this density on the set of
initial data that generates a rogue wave is equivalent10 to the following minimization problem:

(5.5) P(N) :=

{
min

∑
|k|≤N r

2
k,

s.t. (rk, φk)|k|≤N ∈ D(N)(t, z(ε)).

Formally taking N →∞, we can define P as

(5.6) P :=

{
min

∑
k∈Z r

2
k,

s.t. (rk, φk)k∈Z ∈ D(t, z(ε)).

We can show the existence of a minimizer for (5.6) by solving a relaxation of the original problem.
Let us define the set

D̃(t, z(ε)) = {ϑ ∈ H :
∑
k∈Z

ckrk ≥ z0ε
−1/2}

and the relaxed problem

(5.7) P̃ :=

{
min

∑
k∈Z r

2
k,

s.t. (rk, φk)k∈Z ∈ D̃(t, z(ε))
.

Note that D(t, z(ε)) ⊂ D̃(t, z(ε)) by (2.7), and hence P̃ is, in fact, a relaxation of P. Applying
Lagrange multipliers formally11, we find the following ansatz: the set of all minimizers for (5.7) is

8Usually, the Lebesgue measure in RK where K is the dimension of the space of parameters
9In the definition of D(N)(t, z(ε)), we are implicitly using that there exists embeddings, H(N) ↪→ H and

D(N)(t, z(ε)) ↪→ D(t, z(ε)), via setting the missing Fourier modes equal to zero, so that we can define the solution of
the linear Schrödinger equation through (5.2).

10Since we are using the polar representation of ηk as Rke
iϕk , we need to express the Lebesgue measure in polar

coordinates to obtain the claimed equivalence between both optimization problems.
11One could rigorously justify this step by assuming that (rk)k∈Z ∈ l2(Z), and then using the theory of Lagrange

multipliers on Banach spaces. Note that this shrinkage of the feasible region does not affect the set of solutions of P̃.

Hence, without loss of generality, in what follows we will use this assumption when solving P and P̃.
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given by

(5.8) S̃ :=

{
(r∗k, φk)k∈Z ∈ D̃(t, z(ε)) : r∗k =

ckz(ε)∑
k∈Z c

2
k

}
.

To show that S̃ contains all the solutions for P̃, it is easy to see that, for any (rk, φk)k∈Z ∈
D̃(t, z(ε)), we have∑

k∈Z
r2
k =

∑
k∈Z

(r∗k)
2 + 2r∗k(rk − r∗k) + (rk − r∗k)2 ≥

∑
k∈Z

(r∗k)
2 + 2

z(ε)∑
k∈Z c

2
k

∑
k∈Z

ckrk − ckr∗k

≥
∑
k∈Z

(r∗k)
2 + 2

(
z(ε)∑
k∈Z c

2
k

)2∑
k∈Z

c2
k − 2

z(ε)∑
k∈Z c

2
k

∑
k∈Z

ckr
∗
k =

∑
k∈Z

(r∗k)
2,

where the first inequality is strict unless (rk, φk)k∈Z ∈ S̃. Note that there are an infinite number of

minimizers in S̃, since the phases are free.

Back to the original problem, and using (2.7) once more, one can find a minimizer for P that

lives in S̃ choosing the phases (φ∗k)k∈Z such that

(5.9) sup
x∈T

∣∣∣∣∣∑
k∈Z

c2
k e

ikx−ik2t+iφ∗k

∣∣∣∣∣ ≥∑
k∈Z

c2
k.

This is only possible if there exists some x∗ ∈ T such that kx∗ − k2t + φ∗k = φ∗0, for all k ∈ Z. It
is now clear that we can find a two-parameter family of minimizers for P depending on the
position of the peak of the rogue wave, given by x∗ ∈ T, and the phase of the zeroth mode, given
by φ∗0 ∈ [0, 2π). These corresponds to the space-translation and phase rotation symmetries of the
Schrödinger equation, both of which leave norm ‖u(t)‖L∞x invariant.

Now, we are finally ready to prove the following result.

Proposition 5.1. Fix z0 > 0, ε > 0, x∗ ∈ T, φ∗0 ∈ [0, 2π), and t > 0. Then there exists a unique
solution to the minimization problem P in (5.6) with peak at position x∗ ∈ T, time t > 0, and
zeroth phase φ∗0, given by (r∗k, φ

∗
k)k∈Z, where

(5.10) r∗k :=
ckz(ε)∑
j∈Z c

2
j

,

and

(5.11) φ∗k := φ∗0 − kx∗ + k2t (mod 2π) .

Moreover, this minimizer satisfies

(5.12) min
(rk,φk)k∈Z∈D(t,z(ε))

∑
k∈Z

r2
k =

z(ε)2∑
k∈Z c

2
k

,

and corresponds to the initial datum

(5.13) u∗0(x) =
∑
k∈Z

c2
kz(ε)∑
j∈Z c

2
j

eik(x−x∗)+ik2t+iφ∗0 .

Proof. The fact that (r∗k, φ
∗
k)k∈Z is a minimizer for P follows from the fact that it is a minimizer

for the relaxed problem P̃. Hence, existence is established. It is also easy to see that (5.12) and
(5.13) follow from direct computation.
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To establish uniqueness, let us assume that ϑnew := (rnewk , φnewk )k∈Z is another minimizer for

P. By (5.7) and (5.8), we have that ϑnew must also live in S̃, and hence rnewk = r∗k, for all k ∈ Z.
To see that the phases must coincide as well, one just needs to realize that the constraint in (5.9)
is actually binding for (r∗k, φ

∗
k)k∈Z. Hence, it must also be binding for ϑnew (otherwise, we could

reduce the value of the objective function), which implies that φnewk = φ∗k, for all k ∈ Z, as we
wanted to prove. �

Remark 5.2. One can show that, under the same conditions of Proposition 5.1, the moduli of the
unique minimizer for P(N) converges in l2 to (r∗k)k∈Z, and the phases end up aligning with (φ∗k)k∈Z.
This justifies the step where we formally took N →∞ to propose P.

5.2. Concentration result. Our next goal is to show that the minimizers described in Proposi-
tion 5.1 concentrate most of the probability of the set D(t, z(ε)). To make sense of this notion, we
construct a neighborhood U(ε,m1,m2) of the minimizers, given by the (rk, φk)k∈Z ∈ H satisfying
two conditions:

(5.14) r∗k ≤ rk ≤ r∗k + εβ for all |k| ≤ m1,

for β > 0 to be defined, and

(5.15) |φk − φ∗k| ≤ ε for all |k| ≤ m2 except k = 0, 1,

where r∗k and φ∗k = φ∗k(φ0, φ1) were defined in (5.10) and (5.11), respectively. Condition (5.14) is a
one-sided interval around the minimizers’ moduli, (r∗k)k∈Z. Condition (5.15) captures the fact that
a large number of phases must align at the right time t > 0 for a rogue wave to happen. Notice
that (r∗k, φ

∗
k)k∈Z ∈ U(ε,m1,m2), for any choice of m1 and m2.

The numbers m1 and m2 will be chosen later in such a way that they go to infinity as ε→ 0+.
In particular, we will see that m1 ∼ | log ε| and m2 ∼ ε−α for α ∈ (0, 1). Hence, m1 � m2 as
ε → 0+. That is, for |k| ∈ (m1,m2), the size of the moduli is irrelevant, as long as the phases are
synchronized. This is due to the fast damping effect of (ck)k∈Z. However, it is not enough to control
the modulus of 2m1 + 1 Fourier modes to generate a rogue wave. A lack of synchronization in the
phases for |k| ∈ (m1,m2) could potentially destroy a rogue wave generated by the first 2m1 + 1
Fourier modes. This two-scale structure for the linear Schrödinger equation is a new phenomenon12

in the study of the generation of rogue waves.

Our first result shows that if one chooses m1 and m2 as proposed above, the set U(ε,m1,m2)
has the same asymptotic probability as D(t, z(ε)).

Proposition 5.3. Fix z0 > 0. Suppose that

(5.16) m1 = m1(ε) = −1

b
log

(
2
∑

j∈Z c
2
j

z0
ε1/2+β

)
for β ∈ (0, 1/2) and m2 = m2(ε) = ε−α for α ∈ (0, 1). Then

(5.17) lim
ε→0+

ε logP(U(ε,m1,m2)) = − z2
0∑

k∈Z c
2
k

.

Proof. Using (5.14), (5.15), and the independence between moduli and phases, we may bound

P(U(ε,m1,m2)) = P

(
sup

|k|≤m2,k 6=0,1
|ϕk − φ∗k(ϕ0, ϕ1)| ≤ ε

) ∏
|k|≤m1

P
(
r∗k ≤ Rk ≤ r∗k + εβ

)
12This mechanism to generate rogue waves highly depends on the coefficients (ck)k∈Z. See Remark 1.3 for a

motivation of our choice.
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= (2ε)2m2−1
∏
|k|≤m1

e−
(

ck∑
j∈Z c2j

z0ε−1/2

)2

− e
−
(

ck∑
j∈Z c2j

z0ε−1/2 + εβ

)2 ,(5.18)

where we used the definition of r∗k in (5.10). Next, we take logarithms in (5.18) and we multiply
by ε, which yields

ε logP(U(ε,m1,m2)) = ε [2m2(ε)− 1] log(2ε)

− ε
∑

|k|≤m1(ε)

(
ck∑
j∈Z c

2
j

z0ε
−1/2

)2

+ ε
∑

|k|≤m1(ε)

log

(
1− e

−2
ck∑
j∈Z c2j

z0ε−1/2+β−ε2β
)
.

(5.19)

Given that m2(ε) = ε−α for α ∈ (0, 1), the first term on the right-hand side of (5.19) tends to
zero. That is, limε→0+ ε [2m2(ε)− 1] log(2ε) = 0. The second term on the right-hand side of (5.19)
yields

lim
ε→0+

ε
∑

|k|≤m1(ε)

(
ck∑
j∈Z c

2
j

z0ε
−1/2

)2

= lim
ε→0+

∑
|k|≤m1(ε) c

2
k

(
∑

k∈Z c
2
k)

2
z2

0 =
z2

0∑
k∈Z c

2
k

given that m1(ε) → ∞. All that remains to show is that the last term on the right-hand side of
(5.19) tends to zero. That is, if we define

h(ε) = ε
∑

|k|≤m1(ε)

log

(
1− e

−2
ck∑
j∈Z c2j

z0ε−1/2+β−ε2β
)
,

we would like to show that limε→0+ h(ε) = 0. One can compute this limit using the inequalities

(5.20)
y

1 + y
≤ log(1 + y) ≤ y, for y > −1,

with y = − exp

(
−2 ck∑

j∈Z c
2
j
z0ε
−1/2+β − ε2β

)
. The right-hand side of (5.20) gives us that h(ε) ≤ 0.

Using the left-hand side of (5.20), it follows that

h(ε) ≥ −ε
∑

|k|≤m1(ε)

exp

(
−2 ck∑

j∈Z c
2
j
z0ε
−1/2+β − ε2β

)
1− exp

(
−2 ck∑

j∈Z c
2
j
z0ε−1/2+β − ε2β

)

≥ −εm1(ε)

exp

(
−2

cm1∑
j∈Z c

2
j
z0ε
−1/2+β − ε2β

)
1− exp

(
−2

cm1∑
j∈Z c

2
j
z0ε−1/2+β − ε2β

)
& −εm1(ε)

1

1− exp (−5 ε2β)
−→ 0

as long as β < 1/2. The last inequality is due to the choice of m1 in (5.16), which implies that
cm1∑
j∈Z c

2
j

z0ε
−1/2 ≥ 2εβ.

This concludes the proof of Proposition 5.3. �

In view of Proposition 5.3, we have constructed a one-sided neighborhood of the minimizers,
U(ε,m1,m2), which (asymptotically) concentrates as much probability as the set of rogue waves
D(t, z(ε)). Note, however, that we are allowing some flexibility in U , since we only control a finite
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number of Fourier modes, and therefore U may contain waves that will not quite reach height
z0ε
−1/2. Hence, a better set to compare U with is

(5.21) D(t, z(ε)− a(ε)) =

{
ϑ ∈ H : sup

x∈T
|u(t, x |ϑ)| ≥ z0ε

−1/2 − a(ε)

}
,

with a(ε)→ 0 as ε→ 0+. Notice that D(t, z(ε)−a(ε)) is virtually indistinguishable from D(t, z(ε))
and enjoys the same LDP.

Our next goal is to show that U(ε,m1,m2) is almost fully contained in D(t, z(ε) − a(ε)). In
order to prove this, we need a result about the solution to (5.1) for initial data in U(ε,m1,m2).

Lemma 5.4. Consider the set

U2(ε,m2) = {(φk)k∈Z | |φk − φ∗k| ≤ ε for all |k| ≤ m2, except k = 0, 1}.
If u is the solution to (5.1) with initial data given by (rk, φk)k∈Z ∈ H and (φk)k∈Z ∈ U2(ε,m2), then
we have that

(5.22) sup
x∈T
|u(t, x)|2 ≥ (1− 2ε2)

∥∥(ckrk)|k|≤m1

∥∥2

`1k
+ E(ε,m1,m2),

where the error term E(ε,m1,m2) := E+(ε,m1,m2) + E−(ε,m1,m2), with

E+(ε,m1,m2) = (1− 2ε2)
(∥∥(ckrk)|k|≤m2

∥∥2

`1k
−
∥∥(ckrk)|k|≤m1

∥∥2

`1k

)
+ 2ε2

∥∥(ckrk)|k|≤m2

∥∥2

`2k
+
∥∥(ckrk)|k|>m2

∥∥2

`2k

(5.23)

and

(5.24) E−(ε,m1,m2) = −
∑

(j,k)∈R

cjckrjrk,

where R is defined as {(j, k) ∈ Z2 : j 6= k, and |j| > m2(ε) or |k| > m2(ε)}.

Remark 5.5. Notice that, when m1 ≤ m2, one has in fact that E+(ε,m1,m2) ≥ 0.

Proof. As in (2.7), we write

(5.25) sup
x∈T
|u(t, x)|2 =

∑
k∈Z

(ckrk)
2 + sup

x∈T

∑
j 6=k

cjckrjrk cos(ψj − ψk)

where ψk = ψk(t, x) = φk + kx− kt2. Let φ0, φ1 ∈ [0, 2π) be free and choose x∗ so that

φ1 + x∗ − t2 = φ0.

Then we define φ∗k = φ∗k(φ0, φ1) for k 6= 0, 1 according to (5.11). For |j|, |k| ≤ m2, j, k 6= 0, 1, we
use the trivial bound 1− cos y ≤ y2/2 together with the fact that (φk)k∈Z ∈ U2(ε,m2) to estimate

1− sup
x∈T

cos(ψj − ψk) ≤
1

2
|ψj − ψk|2

∣∣∣
x=x∗

=
1

2
|φj + jx∗ − jt2 − (φk + kx∗ − kt2)|2

=
1

2
|φj + φ∗0 − φ∗j − (φk + φ∗0 − φ∗k)|2

=
1

2
|(φj − φ∗j )− (φk − φ∗k)|2 ≤ 2ε2.

(5.26)

The cases where {j, k}∩{0, 1} 6= ∅ satisfy the same estimate by construction. By (5.25) and (5.26),

sup
x∈T
|u(t, x)|2 ≥

∑
k∈Z

(ckrk)
2 + (1− 2ε2)

∑
j 6=k,|j|,|k|≤m2

cjckrjrk −
∑

(j,k)∈R

cjckrjrk

Finally, one can rearrange the terms on the right-hand side to obtain (5.22). �
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In view of (5.14) and (5.22), if ϑ ∈ U(ε,m1,m2), it follows that

(5.27) sup
x∈T
|u(t, x)|2 ≥ (1− 2ε2)

(∑
|k|≤m1(ε) c

2
k∑

k∈Z c
2
k

z0ε
−1/2

)2

+ E(ε,m1,m2)

It is easy to check that such ϑ ∈ U(ε,m1,m2) will live in D(t, z(ε) − a(ε)) as long as the error is
not too small, namely

E(ε,m1,m2) ≥ [z0ε
−1/2 − a(ε)]2 − (1− 2ε2)

(∑
|k|≤m1(ε) c

2
k∑

k∈Z c
2
k

z0ε
−1/2

)2

=: f(ε).(5.28)

Our next goal is to show that the error satisfies this inequality with very high probability.

Lemma 5.6. Suppose that m1 and m2 are chosen as in Proposition 5.3. Then for any c > 0 the
error term in (5.23) and (5.24) satisfies

(5.29) logP (E(ε,m1,m2)) < −c ε) . −c ε exp(b ε−α), as ε→ 0+.

Remark 5.7. Note that for f as in (5.28), we can choose a(ε) in such a way that the following holds.

P (E(ε,m1,m2)) < f(ε)) ≤ P (E(ε,m1,m2)) ≤ −cε)

This is due to the fact that:

(5.30) f(ε) . −ε2β− for β ∈ (0, 1/2).

In order to prove (5.30), we first write:

f(ε) = − 2z0 ε
−1/2 a(ε) + z2

0ε
−1

1−

∥∥(ck)|k|≤m1(ε)

∥∥4

`2k

‖(ck)k∈Z‖4`2k


+ a(ε)2 + 2ε2

(∑
|k|≤m1(ε) c

2
k∑

k∈Z c
2
k

z0ε
−1/2

)2

.

(5.31)

We want to choose a(ε) in such a way that f is eventually negative. To do so, we must identify
the top order of (5.31) as ε → 0+. First of all, note that the second summand in (5.31) has size
O(ε2β), since

1−

∥∥(ck)|k|≤m1(ε)

∥∥4

`2k

‖(ck)k∈Z‖4`2k
=
∥∥(ck)|k|>m1(ε)

∥∥2

`2k

∥∥(ck)|k|≤m1(ε)

∥∥2

`2k
+ ‖(ck)k∈Z‖2`2k

‖(ck)k∈Z‖4`2k
∼ c2

m1(ε) · 1 ∼ ε
1+2β,

which follows from (5.16) and the choice of (ck)k∈Z. Similarly, the last summand in (5.31) has size

O(ε). As a result, we can choose a(ε) = ε1/2+2β−, so that the first summand in (5.31) dominates.
Then (5.30) follows right away.

Proof. For λ > 0 to be fixed, we can bound the desired probability using Markov inequality:

P (E(ε,m1,m2)) ≤ −c ε) = P
(
e−λE(ε,m1,m2)) ≥ eλcε

)
≤ e−λcε E[e−λE(ε,m1,m2)]

≤ e−λcε E[e−2λE+(ε,m1,m2)]1/2 E[e−2λE−(ε,m1,m2)]1/2.(5.32)

The last inequality follows from the Cauchy-Schwartz inequality, (5.23), and (5.24).
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Let us estimate the second factor in (5.32) by 1, since E+(ε,m1,m2) is always non-negative by
(5.23) and Remark 5.5. Next we estimate the third factor in (5.32). We aim to show that it is
uniformly bounded in ε as long as we choose λ correctly. To show this, we first bound the exponent:

2λ
∑

(j,k)∈R

cjckrjrk ≤ λ
∑

(j,k)∈R

cjck(r
2
j + r2

k)

≤ 2λ
∑

|k|≤m2(ε)

ckr
2
k

∑
|j|>m2(ε)

cj + 2λ
∑

|k|>m2(ε)

ckr
2
k

∑
j 6=k

cj

= 4λ
e−b(m2(ε)+1)

1− e−b
∑

|k|≤m2(ε)

ckr
2
k + 2λ

1 + e−b

1− e−b
∑

|k|>m2(ε)

ckr
2
k.

Using this bound and independence, we have that

E
[
e2λ

∑
(j,k)∈R cjckRjRk

]
≤ E

[
e

4λ e−b(m2(ε)+1)

1−e−b
∑
|k|≤m2(ε)

ckR
2
k

]
E
[
e

2λ 1+e−b

1−e−b
∑
|k|>m2(ε)

ckR
2
k

]
=

∏
|k|≤m2(ε)

1

1− 4λ e−b(m2(ε)+1)

1−e−b ck

∏
|k|>m2(ε)

1

1− 2λ 1+e−b

1−e−b ck
.(5.33)

Let us bound the first factor in (5.33). Fix λ = C exp(bm2(ε)) = C exp(bε−α) for some C > 0

to be chosen soon. Since |k| ≤ m2(ε), we have that λe−b(m2(ε)+1) ≤ Ce−b < C. Choose C small
enough so that

(5.34)
4C

1− e−b
<

1

2
.

This choice guarantees that

log

 ∏
|k|≤m2(ε)

1

1− 4λ e−b(m2(ε)+1)

1−e−b ck

 ≤ ∑
|k|≤m2(ε)

log

(
1

1− ck/2

)
≤

∑
|k|≤m2(ε)

ck . 1.

Consequently, the first factor in (5.33) is uniformly bounded in ε. We perform a similar analysis
with the second factor in (5.33). By making C smaller (if necessary), we can arrange:

2λ
1 + e−b

1− e−b
ck = 2Cebm2(ε) 1 + e−b

1− e−b
e−bm2(ε)−b (|k|−m2(ε)) ≤ 1

2
e−b(|k|−m2(ε)).

As a consequence,

log

 ∏
|k|>m2(ε)

1

1− 2λ 1+e−b

1−e−b ck

 ≤ ∑
|k|>m2(ε)

log

(
1

1− 1
2e
−b(|k|−m2(ε))

)
≤

∑
|k|>m2(ε)

e−b(|k|−m2(ε)) . 1

uniformly in ε. Therefore we have that all the terms in (5.33) are uniformly bounded in ε.

This result, together with (5.32), yields

P (E(ε,m)) < −c ε) ≤ Cb e−cλε .b exp(−c ε exp(b ε−α))

and the lemma follows. �

As we mentioned in Remark 5.7, Lemma 5.6 shows that our one-sided neighborhood of mini-
mizers, U(ε,m1,m2), is almost entirely contained in the set

D
(
t, z(ε)− ε

1
2

+2β−
)

=

{
ϑ ∈ H : sup

x∈T
|u(t, x |ϑ)| ≥ z0ε

−1/2 − ε
1
2

+2β−
}
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for β ∈ (0, 1/2) and m1 and m2 as in (5.16). More precisely, we have shown that the difference
between the two events is doubly exponentially unlikely, i.e. there exists some c > 0 such that

P
(
U(ε,m1,m2)−D

(
t, z(ε)− ε

1
2

+2β−
))
� exp(− exp(cε−α)), as ε→ 0+.

We summarize the results of this section in the following theorem. For the sake of clarity, we
only present a special case of our results where we fix α = 1/2 and β = 2/5.

Theorem 5.8. Consider the set U(ε) given by the ϑ = (rk, φk)k∈Z ∈ H satisfying:

(5.35) r∗k ≤ rk ≤ r∗k + ε2/5, for all |k| ≤ m1(ε) = −1

b
log

(
2
∑

j∈Z c
2
j

z0
ε9/10

)
,

and

(5.36) |φk − φ∗k| ≤ ε, for all |k| ≤ m2(ε) = ε−1/2 except k = 0, 1,

where r∗k and φ∗k = φ∗k(φ0, φ1) were defined in (5.10) and (5.11), respectively. Then U(ε) con-
centrates asymptotically as much probability as the set of rogue waves. Moreover, U(ε) is almost

entirely contained in the set D(t, z0ε
−1/2 − ε). More precisely,

(5.37) logP
(
U(ε)−D(t, z0ε

−1/2 − ε)
)
. − exp(cε−1/2)) as ε→ 0+.

Remark 5.9. The construction of the set U(ε) in Theorem 5.8 is based on the linear Schrödinger
equation. However, due to the method we used to prove Theorem 1.1, it is possible to adapt13

Theorem 5.8 to handle subcritical times of the nonlinear equation (1.9).

Regarding critical times, it is possible to construct an analogous set Uapp(ε) based on the resonant
approximation in (4.8). To do so, one must change the definition of φ∗k in (5.11) to include the
additional terms appearing in the phases in (4.8), namely

φ∗k := φ∗0 − kx∗ + k2t− ε2t (ckr
∗
k)

2 (mod 2π) .

Remark 5.10. Beyond Theorem 5.8, an interesting open question would be to investigate the dif-
ference D(t, z0ε

−1/2 − ε) − U(ε). In particular, is it possible to prove that for some choice of m1

and m2 we have that

P (D(t, z(ε))− U(ε,m1,m2))� P (D(t, z(ε))) as ε→ 0+ ?

This would indicate that any rogue wave that doesn’t belong to the set U is much more unlikely
to happen than those we can characterize in U . In order to prove such a result, one might need a
better understanding of the asymptotic behavior of P (D(t, z(ε))) beyond the top order (which is
all we need in the proof of Theorem 1.1).

Remark 5.11. Another interesting open question is that of quantifying the growth of rogue waves.
Suppose that we have a rogue wave of height z > 0 at time t > 0. What is the smallest (in the
sense of L∞x ) initial datum ϑ ∈ H that could have given rise to a wave of such height? And for
such ϑ, what is the growth coefficient? Mathematically, that would be

supx∈T |u(t, x |ϑ)|
supx∈T |u(0, x |ϑ)|

=
z

supx∈T |u(0, x |ϑ)|
.

We investigate this question numerically in the next subsection.
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Figure 1. Dependence of m as defined in (5.39) on b for u(t, x) given by (5.41)
where n = 100, z = 1, 0 ≤ t ≤ 2π, −π ≤ x ≤ π, and using N = 2500 grid points
each for x and t (i.e., ∆t = ∆x ≈ 2.5×10−3). The simulations consider 100 b-values
in the range 10−3 ≤ b ≤ 5× 10−1 with ∆b ≈ 5× 10−3.

5.3. Numerical Examples. In this section we investigate the question of maximum possible
growth of rogue waves as described in Remark 5.11. The main question is the following: which is
the smallest initial datum ϑ ∈ H that gives rise to a rogue wave of height z > 0 at time t0 > 0.
This smallness is measured in terms of the initial height: supx∈T |u(0, x |ϑ)|.

In the case of the linear Schrödinger equation, we focus on the minimizers obtained in Proposi-
tion 5.1. Using the symmetries of the Schrödinger equation, we may assume that the peak of the
rogue wave happens at x∗ = 0, with phase φ∗0 = 0, at time t = 0. Moreover, we may normalize the
height so that z = 1. This initial datum is given by

(5.38) u∗0(x) =
∑
k∈Z

c2
k∑

j∈Z c
2
j

eikx.

Then the question of maximum possible growth is equivalent to finding the following quantity:

(5.39) m = min
t≥0

sup
x∈T
|u(t, x)|.

We conduct numerical simulations to find (5.39) in the case where u(t, x) is the solution to the
linear Schrödinger equation with initial datum (5.38). To do so, we must truncate the series in
(5.38), so we consider

(5.40) u∗0(x) =
∑
|k|≤n

c2
k∑

|j|≤n c
2
j

eikx

13Note that (r∗k, φ
∗
k)k∈Z may not solve the minimization problem associated with (1.9) anymore, which is analogous

to (5.6). Despite that, the proof of Theorem 1.1 shows that the linear part of the equation dominates for such times,
and therefore the (r∗k, φ

∗
k)k∈Z for the linear equation are a good approximation to the actual minimizers.
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Figure 2. Snapshots of numerical simulations of (5.41) at times: (a) t ≈ 2.2735,
(b) t ≈ 2.9019, (c) t ≈ 6.1694, and (d) t ≈ 6.2832. The solution was simulated for
0 ≤ t ≤ 2π, −π ≤ x ≤ π using z = 1, b = 0.07, n = 100, and N = 104 grid points
each for x and t (i.e., ∆t = ∆x ≈ 6.28 × 10−4). The dashed line in each image
represents the value m ≈ 0.2225 as defined in (5.39), which is obtained in (a).

and the associated solution

(5.41) u(t, x) =
∑
|k|≤n

c2
k∑

|j|≤n c
2
j

eikx−it|k|
2
.

We were first interested in exploring the dependence of growth on the constant b appearing in
the exponent of ck in (1.8). We therefore computed u(t, x) from (5.41) with n = 100, −π ≤ x ≤ π,
and 0 ≤ t ≤ 2π using 2500 data points each for x and t (i.e., ∆t = ∆x ≈ 2.5 × 10−3). We then
computed m in (5.39) for 100 values of b in the range 10−3 ≤ b ≤ 5× 10−1 and note that m = m(b)
generally decreases as b is decreased (Figure 1). Note that Figure 1 seems to break down as b→ 0+.
We suspect that this is due to the use of n = 100. Equations (5.14) and (5.16) seem to indicate
that one needs to control a certain number of Fourier modes for the truncation error to stay small.
This number grows proportionally to 1/b, so we might expect that for b . 0.01 (up to an unknown
constant) this number would need to be larger than 100.

As a demonstration of this growth, we chose b = 0.07 and used a refined discretization of ∆t =
∆x ≈ 6.28 × 10−4 to capture dynamics on fast time scales. This computation yields m ≈ 0.2225,
representing a wave whose height can grow by a factor of approximately 4.5. Snapshots of the
simulation are shown in Figure 2. The dashed black line indicates the value of m, which is obtained
in Figure 2(a).
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