Endosperm turgor pressure both promotes and restricts seed growth and size
Résumé
Organ size depends on complex biochemical and mechanical interactions between cells and tissues. Here, we investigate the control of seed size, a key agronomic trait, by mechanical interactions between two compartments: the endosperm and the testa. By combining experiments with computational modelling, we tested an incoherent mechanical feedforward loop hypothesis in which pressure-induced stresses play two antagonistic roles; directly driving seed growth, but indirectly inhibiting it through mechanosensitive stiffening of the seed coat. We show that our model can recapitulate wild type growth patterns and explain the small seed phenotype of the haiku2 mutant. Our work further reveals that the developmental regulation of endosperm pressure is needed to prevent a precocious reduction of seed growth rate induced by force-dependent seed coat stiffening.