Microscopic derivation of a traffic flow model with a bifurcation - Archive ouverte HAL
Article Dans Une Revue Archive for Rational Mechanics and Analysis Année : 2024

Microscopic derivation of a traffic flow model with a bifurcation

Résumé

The goal of the paper is a rigorous derivation of a macroscopic traffic flow model with a bifurcation or a local perturbation from a microscopic one. The microscopic model is a simple follow-the-leader with random parameters. The random parameters are used as a statistical description of the road taken by a vehicle and its law of motion. The limit model is a deterministic and scalar Hamilton-Jacobi on a network with a flux limiter, the flux-limiter describing how much the bifurcation or the local perturbation slows down the vehicles. The proof of the existence of this flux limiter-the first one in the context of stochastic homogenization-relies on a concentration inequality and on a delicate derivation of a superadditive inequality.
Fichier principal
Vignette du fichier
Notes20211111-perturbation_NF.pdf (560.15 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03427102 , version 1 (12-11-2021)

Identifiants

Citer

P Cardaliaguet, N Forcadel. Microscopic derivation of a traffic flow model with a bifurcation. Archive for Rational Mechanics and Analysis, 2024, 248 (6), ⟨10.1007/s00205-023-01948-8⟩. ⟨hal-03427102⟩
111 Consultations
80 Téléchargements

Altmetric

Partager

More