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Microscopic derivation of a traffic flow model with a bifurcation

P. Cardaliaguet! N. Forcadel?
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Abstract

The goal of the paper is a rigorous derivation of a macroscopic traffic low model with a bifurcation
or a local perturbation from a microscopic one. The microscopic model is a simple follow-the-leader
with random parameters. The random parameters are used as a statistical description of the road
taken by a vehicle and its law of motion. The limit model is a deterministic and scalar Hamilton-
Jacobi on a network with a flux limiter, the flux-limiter describing how much the bifurcation or
the local perturbation slows down the vehicles. The proof of the existence of this flux limiter—the
first one in the context of stochastic homogenization—relies on a concentration inequality and on a
delicate derivation of a superadditive inequality.

AMS Classification: 35D40, 35R60, 35F20.

Keywords: traffic flow, stochastic homogenization, Hamilton-Jacobi equations on networks.

Contents

[_The main result| 7
[1.1 Statement of the problem| . . . . . . . . . . ... 7
[L2  Assumptions| . . . . . . . ... 8
[[-3 The homogenized velocities and Hamiltonlans, . . . . . v v v v v v v v e e e 9
L4 The main resultl. . . . . . . . . . . e 10

12 Properties of the solution| 11
2.1 Basic properties|. . . . . . .. e 11
2.2 _The maximal distance to the next vehiclel . . . . . . ... .. ... ... ... ... ... 12
2.3 Approximate speed of propagation| . . . . . . .. ... Lo 14

B__The time function| 16
B.1 _Preliminariesl . . . . . . . . e e 17
3.2 A concentration inequality|. . . . . . .. L oL oL 19
[3.3 A corrector outside the junction|. . . . . . ... ..o oo 26
[B4 A superadditive QUANBILY]. - « « « « v v e e e e e e 28

|4 _Definition of the flux limiter and homogenization| 35
4.1 The limit of N, an O 35
4.2  Comparison principle|. . . . . . . . . 40
4.3 Proof of the homogenization|. . . . . . . . . . .. ... 42

1CEREMADE, UMR CNRS 7534, Université Paris Dauphine-PSL, Place de Lattre de Tassigny, 75775 Paris Cedex 16,
France. cardaliaguet@ceremade.dauphine.fr

2Normandie Univ, INSA de Rouen Normandie, LMI (EA 3226 - FR CNRS 3335), 76000 Rouen, France, 685 Avenue de
I’Université, 76801 St Etienne du Rouvray cedex. France. nicolas.forcadel@insa-rouen.fr



A Appendix 47
A.1 Computation for Lemma [2.7]. . . . . ... ... ... oo 47

A2 Flux-limited solutionsl . . . . . . . . . . . 47

[A.3 Homogenization outside the junction| . . . . . . . . . ... ... o Lo 48

[A.4 Convexity of the effective Hamiltonians| . . . . . .. .. .. ... ... ... ... 48
Introduction

In this paper we study traffic flows models with a bifurcation consisting in a single incoming road which
is divided after a junction into several outgoing ones. As a particular case our analysis contains traffic
flow models on a single road with a localized perturbation (a bottleneck for instance). There are two
main classes of models to describe these situations: microscopic models, which explain how each vehicle
behaves in function of the vehicles in front; and macroscopic ones, taking the form of a conservation
law in which the main unknown is the density of vehicles on the roads. Our aim is to start from simple
microscopic models on a bifurcation (or on a perturbation) and derive from these models continuous ones
after scaling. The point is to get a better understanding of the continuous traffic low models arising
as the limit of discrete ones. Indeed there exists many different continuous models of traffic flow on a
junction or with a local perturbation in the literature [5l 13| 23] 32, 33} 48] and the relation between
these models is not completely clear. If the basic continuous model on a single straight road (the so-
called LWR model, from Lighthill and Whitham [38] and Richards [44]) is well understood and justified
by micro-macro limits in several contexts [8, 22] [26] [34] [35], there is no consensus for problems with a
junction or a bifurcation: the models are only obtained so far by heuristic arguments, with the exception
of [28] discussed below. In this paper we show that the continuous model suggested in [31], [36] pops up
as the natural limit of follow-the-leader models. The continuous model in [31], [36] takes the form of a flux
limited Hamilton-Jacobi equation: it is a kind of integrated form of the basic LWR model outside the
junction combined with a “flux limiting condition” on the junction. Our micro-macro derivation holds
for a large class of follow-the-leader models, allowing for a possible heterogeneous behavior of the vehicles.

Our starting point is a microscopic model. Before describing it, let us recall that few discrete traffic
flow models with a junction or a local perturbation exist in the literature: [25] discusses an interesting
leader follower model with a junction including several incoming and outgoing roads: the model we
present in the present paper shares similar flavors, but in the much simpler setting of a single incoming
road; [5] presents a microscopic model of traffic with a flow limitation at a point and formally justifies
the derivation of a conservation law with a discontinuous flux (but leaves the rigorous proof as an open
problem); [30] describes a traffic flow model with (deterministic) traffic lights and derives rigorously the
continuous model (in terms of a flux limited Hamilton-Jacobi equation on the line). The only model
proving micro-macro derivation in the case of a bifurcation is [28]: in [28] there are two outgoing roads
and it is assumed (no too realistically) that every second vehicle takes a given road. In this setting the
authors show that the convergence of the discrete problem to a flux limited solution of a Hamilton-Jacobi
equation on a junction. One of the goals of the present paper is to introduce a more realistic model in
which one replaces the deterministic rule of [28] by a random one (e.g., every second vehicle in average
takes a given outgoing road). The introduction of randomness in traffic flow problems is natural and can
be traced back to [2I]. The micro-macro derivation of the LWR model from a random one on a single
road was established in [19]. Here we prove the corresponding result for a bifurcation.

Short description of the microscopic model. In our discrete model there is one incoming road and
K outgoing ones, where K € N, K > 1. A position on the road is given by a pair (z, k) where z is a real
number and k is a label in {0, ..., K}. If z is nonpositive, then by convention & = 0 and the vehicle is on
the incoming road. If x is positive then k € {1,..., K} and the vehicle is on the outgoing road k. The
junction is an interval around z = 0, say, to fix the ideas, [—Ryp,0]. The vehicles are labelled by i € Z.
The position of the vehicle labelled i at time ¢ is denoted by U;(t). The outgoing road the vehicle chooses
is fixed from the beginning (independent of time) and denoted by T; € {1,..., K}. The motion of the



vehicles is given by a leader-follower model: it satisfies the system of ordinary differential equations

d

dt
We assume that all the vehicle are going or have gone through the junction and were ordered before
going through the junction: ¢ + 1 is the label of the vehicle right in front of the vehicle i before this
vehicle has gone through the junction. We denote by ¢; the label of the first vehicle in front of vehicle 4
taking the same outgoing road as ¢ (in other words, ¢; = inf{j > i,T; = T;}). Each vehicle has a type Z;
encoding, on the one hand, the outgoing road the vehicle is taking or is going to take (namely, T; = T'(Z;)
for a deterministic map T : Z — {1,..., K}) and, on the other hand, the “behavior” of the vehicle (for
instance, if it is a truck or a race car). The velocity law V = V. (e1, ea,2) depends on the type z € Z of
the vehicle, the distances e; or es to the next vehicle and the position x of the vehicle.

In order to obtain a limit model with a few unknowns and as simple as possible, we do not keep track
of all the vehicles of a given type (in contrast with [24]). Instead we prefer a statistical description and
assume that the types (Z;) of the vehicles are random, independent and with the same law (i.i.d.); as a
consequence the (T;) are also i.i.d. In addition, we also suppose that the traffic is homogeneous outside
the junction: namely, we assume that, before the junction (i.e., z < —Rp), V. (e, eq,x) depends only
on e; and z, i.e., V,(ej, e, x) = ‘720(61). In the same way, after the junction (i.e., x > 0) we suppose
that V. (e1,es,2) = V¥(es) depends only on ey, k = T(z) and z. There are two main reasons to do so:
first (and again in contrast with [24]), we will see that these assumptions yield to a relatively simple
continuous scalar equations. Second, tracing the type of a vehicle (and even more the road it is going to
take later on) seems an impossible task in practice: a statistical description is probably more justified,
at least if the structure of the traffic is stable in time.

For later use we denote by 7% := P[T; = k] the proportion of vehicle taking (or planning to take)
road k.

Ui(t) = Vg, (U1 (t) — Us(t), Uy, (t) — Ui (1), Us(t)),  t=0, ieZ. (1)

The convergence result and the continuous model. For ¢ > 0, we look at the (scaled) traffic
density of vehicles on each road:

€ Z Sev;(t)e)(dz) if x>0, ke{l,..., K}

m&(dx, k,t) = €2, Ti=k
( ) 6Z&mwﬁmﬂ if <0, k=0
i€Z

and want to understand the limit, as € — 0, of m€. For this it is convenient to integrate in space m¢ and
look instead at:

e(r*)~! ( Z Sevi(t/e) (T, +00)) — Z 55U7;(t/e)((—007$])>

i€Z, 1<0, T;=k i€Z, 1>0, T;=k
ve(x, k,t) = ife>0,ke{l,...,K}
( Z o, 1) ((w, +0)) Z Ou, (¢ ])) ife<0, k=0.
i€Z, 1<0 i€Z, 1>0
Note that d,v¢ = —m¢ if x < 0 while d,v° = —(7¥)"'m® if x > 0 and k € {1,..., K}. This choice

ensures the map v to be “almost continuous” at 0 since the vehicles are split between the K roads after
the junction in proportion 7% for the road k. Our main result (Theorem roughly states that, under
suitable assumptions on V and if v¢(+, -, 0) has a locally uniform (deterministic) limit vy(:,) at time ¢ = 0,
then v¢ has a.s. a locally uniform (deterministic) limit v which is the unique viscosity solution to

Oz, k,t) + HE (0pv(x, k,t)) = 0 ife#0,t>0
Oy + max{A, H** (6ov), H" " (1v),...,HS = (0gv))} =0 atz =0 (2)
v(z,k,0) = vo(x, k) for any =z, k.

The first equation is a Hamilton-Jacobi (HJ) equation in which the homogenized Hamiltonians H k(p)
can be explicitly computed from the V¥. As we explain below it corresponds to an integrated form of



the LWR equation. The second equation describes the behavior of the vehicles at the junction (reduced
after scaling to # = 0): we explain below the different terms. It roughly says that d;v + A =0 at z = 0
(unless the HJ equation is satisfied at z = 0). The real number A is the so-called flux limiter. This is the
main unknown of the paper. It quantifies how the traffic is slowed down by the junction. We show that

Ag < A <0, where Ag := max_ min H*(p).
ke{0,...,K} peR

When A = Ap, the flux is not limited at all. If A = 0, then the traffic is completely stopped by the
junction (this does not happen under our assumptions). The existence of A is the main point of the paper,
which presents the first existence result of a flux limiter in the context of a stochastic homogenization
problem. We show that A can be computed as follows:

A= fhm flj{zeZ Js € [0, 1], s) =0},

where $E denotes the number of elements of a set E, e = (€*)r—o,. x is such that H*(—1/e*) =
min, H*(p ) for any k € {0,...,K} and (Ue,;) is the solution to with the “flat” initial condition
U..i(0) = e*i (where k = 0 1f i <0and k = T; if i > 0). The quantity A can be interpreted as the
maximal fraction of vehicles the junction can let pass given an amount of time.

The introduction of Hamilton-Jacobi equations on a junction or stratified domains can be traced back
o [11, 2, B 10, 16} 18] 37, 45] [46]; a general theory of flux limited solutions was developed in [36] (see
also [I1]) with, as fundamental result, a comparison theorem; [42, [43] present different arguments for the
comparison while [12] proposes a general survey on the topic.

Short discussion of the problem in terms of scalar conservation law. Hamilton-Jacobi equations
on a junction and scalar conservation laws with discontinuous coefficients seem intimately connected,
although the rigorous relationships between the two notions has not been discussed so far. We do not
intend to investigate this point here but only develop formal arguments and postpone a more detailed
analysis to future works.

For ke {1,..., K}, we define the random measures
e(mh)~1 Z Seve(r/e(dr) itz >0, ke{l,..., K}
(dw b t) — i€Z, Ty=k, Ut (t/€)=0
(da. k. 1) e > bwruelde) ifr<0, k=0

i€, Uf(t/e)<0

The quantities are the scaled densities of the traffic on each branch of the junction. A elementary
computation shows that we have, in the sense of distribution, p¢ = —d,v¢. According to our main result
(Theorem p¢ converges a.s. and in the sense of distribution, to p := —d,v. As v solves and is
Lipschitz continuous, it is known [20] that p is, outside the junction, an L* entropy solution of the scalar
conservation law

dip+ 0:(fpa. k) =0 forz #0, 3)

where ) { |
_f =H%(=p) fx>0andke{l,...,K},
ﬂ“%ky‘{ﬂ%m if 2 <0andk =0,

with an initial condition given by p(x, k,0) = —0yvo(x, k).

It is well-known [4] that an extra conditions at the junction (depending on the model) is needed to
ensure the uniqueness of such a scalar conservation law. The additional equation at = 0 for v in
should lead to this extra condition. It does not seem however obvious how to interpret it in terms of the
limit density p.

Method of proof. We now describe the method of proof of our main result. As it is quite involve it is
convenient for this discussion to reduce drastically the problem by considering the case of a single road
on which the vehicle behave in an identical way, expect on a small zone on which they are subject to a



perturbation depending on their type. This situation pops up for instance when the vehicles are slowed
down on a small portion of a road by a speed bump to which they may react in a different way depending
on their size. The leader-follower model now reads

d

1 Ui() = V2, (Ui (t) = Ui(t), Ui(1)) (4)

where Z; is as before the type of the vehicle (supposed to be an i.i.d. random variable) and where
V.(p, ) = V(p) outside the perturbation [~ Ry, 0]. Following [36] (see also [30, 28]), one expects the limit
model to be of the form of a LWR model with a flux limiting condition at the origin. The fundamental
diagram outside the perturbation is given by H(p) = pV(—1/p) and the only issue is to compute the
flux limiter. In the case of a deterministic model (for instance time periodic, see [30]; or periodic in
the type, see [28]) a standard method consists in building a corrector. However in the random setting
such a corrector does not necessarily exist: see for instance the discussion in [40]. A standard way to
overcome this difficult issue is to identify subadditive quantities [0, 41l 47]. In the case such a quantity
is not directly available, a different, more quantitative approach has been developed in [7] and later used
in different contexts [17, 27, [39]. As no subadditive quantity seems adequate in our setting we follow this
alternative approach.

The starting point is to explore what happens for the “flat” initial condition U;(0) = ei (i € Z), where
e > 0 is such that H(—1/e) = min, H(p). In the absence of a perturbation, this initial condition would be
a steady state of the problem: namely, U;(t) = ei + tV (e) solves (@) outside the perturbation. The point
is to understand how this steady state solution is modified by the perturbation. For this we introduce
the (random) quantity

0.(t) = inf{i = 0, U_;(t) < 0},

which corresponds to the number of vehicles having gone through the perturbation at time ¢. If the
problem was unperturbed, one would have simply 6, (t) ~ tV(e)/e. To understand if the macroscopic
model is affected by the perturbation, one is therefore led to investigate the behavior of 8.(t)/t as t tends
to infinity. The existence of such a limit is the main difficulty of the work. Indeed, 6. does not seem to
enjoy any obvious sub- or superadditivity property. Following [7] the first step of the proof consists in
showing that 6.(t)/t is almost deterministic. Namely, we prove that there is a constant C' (depending on
e) such that, for all € € (0,1] and all t > Ce™ !,

P[l6c(t) — 0c(t)] > et] < Ct?exp {—€*t/C}.
where 6, (t) = E[0.(t)]. For this the technique developed in [7] consists in showing that the martingale
My (t) :=E[ 0(t) | Fu] —E[0c(t)],

(where (F,,) is the filtration generated by {Z_,,, Z_p+1,. .. }) has bounded increments, coincides with 6, (¥)
for n = [Ct] (where C is a large constant) and then use Azuma’s inequality. Although we won’t study
this model in detail later, it is indeed possible to show in this case that (M,,) has bounded increments by
using three facts:

e First My(t) = 0 since the randomness of 6. (t) comes only from Z; with i < 0 (indeed, U;(t) =
ei + V(e)t for i = 0 is deterministic),

e Second one can show that two subsequent vehicles remain at a distance not larger than e before
the perturbation,

e Third one can prove that a vehicle close to the perturbation will cross it in a controlled time.

The next step consists in establishing that 0 ()/t has indeed a limit as ¢ — +c0. The difficult issue is
to understand how the profile of the solution (U;(t)) at time ¢ looks like the profile of the (U;(0) = ei)

at time 0. For this one looks at how much (U;(t));ez is far from the unperturbed solution (ei + V(e)t):
namely one looks at the quantity

M_(t) := inf U;(t) — ei — V(e)t.

i€z



If the traffic is slowed down by the perturbation, this quantity is expected to be nonpositive and to
decrease in time. An almost finite speed of propagation argument (Lemma shows that, far from
the perturbation, the solution is almost given by the steady state and therefore the infimum in M. (¢) (if
negative) cannot be achieved by large values of |i|. So there is a minimum point i¢ for M.(¢). By the
envelop theorem one expects that

d d
—M,(t) = —
0> (t) g

dt Uio (t) - V(e) = VZi(Uio-‘rl - Uio (t)7 Uio (t)) - ‘7(6)

By minimality of ig, one also has
Ui(t) — Uy, (t) = e(i —ig) VieZ. (5)

The two inequalities above imply that U, (t) € [—Ro,0] because otherwise one would have, as V is
nondecreasing and holds,

0> ML) =V (Uigor — Uiy (1))~ V(e) 2

<t

(e) —V(e) = 0.
The fact that U;, (t) € [— Ry, 0] then implies that iy is close to —6.(¢) and thus that
M_(t) = Uy, (t) — eig — V(e)t = efo(t) — V(e)t + O(1).
On the other hand, by , one has
Ui(t) = Ui, (t) + e(i —ig) = e(i —ig — Ro/e) VieZ.

Setting i1 = ip + Ro/e, we obtain by comparison that the solution U; at time ¢ + s is above the solution
starting from e(i — i;):
Ti, W .
UF(t+s) = U (s) Vi€ Z,
(the shift in the w is due to the fact that one has to shift also the types of the vehicles). By the
concentration inequality and the fact that ig & —6.(t) ~ —0.(t), this implies that

Oo(t 4 5) = 0.(s) + 0.(t) — C.

Fekete’s Lemma then implies that c(¢)/t has a limit and therefore that 0.(t)/t has a limit. One can also
prove that this limit gives the value A of the flux limiter.

The proof in the general case (a bifurcation with several outgoing roads) follows the same lines but is
much more involved. Many arguments described above are no longer valid. For instance, it is no longer
true that My(t) vanishes, because, as the distribution of the vehicles at initial time on the outgoing roads
is random, 6.(¢) actually depends on the behavior of all the vehicles. We overcome this issue by using
the approximate finite speed of propagation. Second, the distance between two subsequent vehicle can
be arbitrarily large: this is already true at the initial time on the outgoing roads. In addition, because
the vehicles have different types, the maximal speed of a leader can be larger than the maximal speed
of its follower. We show however that this distance is controlled by the distance to the first “slow”
vehicle in front of the leader (Lemma [2.5). The main consequence of this is that M, (t) cannot have
bounded increments (in contrast with [7] for instance; see however [I7]); one has to rely on more refined
concentration inequalities. Finally the presence of a bifurcation (instead of a perturbation) makes the
proof of the superadditive inequality much trickier: it actually relies on the delicate construction of a
corrector outside the junction (Subsection .

Organization of the paper

In the first part we explain the problem and the notation, introduce the standing assumption and state the
main result (Theorem [I.1)). In the second part we give several facts which are valid for any solution of the
system: an estimate of the distance to the next vehicle (Lemma [2.5) and an approximation finite speed



of propagation (Lemma. In the third part we study the time function 6.(t)/t, show its concentration
(Theorem and prove its convergence (Theorem . In the last part, we derive from this the
behavior of the solution starting from the flat initial datum (Lemma [.3), infer definition of the flux
limiter A and finally show the homogenization result.

Throughout the paper, the letter C' denote a deterministic constant which may change from line to
line and which depends on the data but not on time.

1 The main result

1.1 Statement of the problem

We consider the system

d .
Ui (1) = Vze (Ui (8) = UZ(6), U (1) - UP (1), U (t) i€ Z, ¢ >0, (6)
where V : Z x R® — R, is Lipschitz continuous in the three last variables (uniformly in the z—variable),
nondecreasing with respect to the two middle ones and bounded by ||[V]|o,. The type of the vehicle i € Z
is the random variable Z; in Z. We assume that Z is a finite set and that the (Z;);cz are i.i.d.

There is a single incoming road and K outgoing roads (where K € N\{0}). The junction R is given
by

R¥,  R®=(~m,0] x {0}, R* = [0, +0) x {k} for ke {1,...,K}.

=

R =

b
Il
o

We also denote by R the interior of the roads:

o

R=| | RF,  R°= (—,0) x {0}, RF= (0, +0) x {k} for k e {1,..., K}.

C= &

kel
Il
=)

The outgoing road chosen by a vehicle is determined by its type z and is given by the map T : Z2 —
{1,...,K}. We set
Ty =T(Z7) and €7 = inf{j > i, T} = T;"} Vi e Z.

K2

The vehicle ¢; is the first vehicle in front of ¢ which takes the same outgoing road as i. As the vehi-
cles with the same outgoing road remain ordered, ¢; does not depend on time. For k € {1,..., K}, let
7% = P[Ty = k] be the probability for a vehicle to take the outgoing road k. By convention, we set 70 = 1.
Without loss of generality, we assume throughout the paper that ™% € (0,1] for any k € {1,...,K}. In
this case ¢; is well-defined a.s. since, P—a.s., {j > i, Ty = T} is nonempty.

The bifurcation is supposed to be at x = 0. We assume that the equation is homogeneous outside
a transition zone [—Ro,0] near the bifurcation: namely we suppose the existence of Ry > 0 and of
VO ..., VE.[0,+0m) — [0, +00) such that

‘/;,0(61) if x < —Ro
Valersez,0) = { VF(es) ifz=0and T(z) = k.
The meaning of this assumption is that, if the position U;(t) of a vehicle ¢ at time ¢ is not in the interval
(=R, 0), the velocity of this vehicle is determined by its type and by the distance to the vehicle in front
of it (which has label ¢ + 1 if U;(t) < —Rp and ¢; if U;(t) = 0). It is only when the vehicle is in the
transition zone [— Ry, 0] that its velocity also depends possibly on its position and on the vehicles in front;
for instance it may slow down to prepare the change of road.

The problem as stated above contains the following particular cases:



e Problem on a single road with a perturbation: in this case there is a single outgoing road and the
vehicles solve the simpler system

d .
SUL() = Ve (US4 () —UF (0, UP(W)  ieZ, t20,

where V,(e1,x) = V,(e1) does not depend on z if x ¢ [— Ry, 0].

e Problem in which the type is only the choice of the outgoing road: in this case the system is still
of the form (6)) but one has Z = {1,...,K}, T(z) = z and the V¥ do not depend on z. There is
still a transition zone [—Rg,0] on which the velocity of the vehicle i passes from a dependence to
the distance to the vehicle right in front (with label ¢ + 1) to the distance to the vehicle going on
the same outgoing road (with label £;).

If the proof of homogenization would be somewhat simpler in the first case (as described in the intro-
duction), the second case contains already (almost) all the difficulties we will meet below.

The goal of the paper is to understand the behavior of the solution on large scale of time and space:
namely, the behavior of (z,t) — €Uy, (t/€), (where [y] is the integer part of the real number y).

Notation: Throughout the paper,  := Z% is endowed with the product o—field F and with the
product probability measure P. We denote by 7 : Z x Q — ) the shift map defined by

(Thw)i = Witn, Vw = (wi)iez € Q, Vn e Z.

We set Z¢ = w; for w = (w;) € Q and i € Z. As P is the product measure on €, this means that the

(Z;)i € Z are i.i.d. We note for later use that Z" = Z¢ while ;" = £¢_, — n for any n,i € Z.

For z,y € R, we denote by [z] the integer part of z, set (z)y = max{0,z}, (z)— = max{0, —z},
z Ay =min{z,y}. If F € F, then E¢ = Q\E.

1.2 Assumptions

Let us state our standing assumptions on V:

(H,) For any z € Z, the map (e, e2,z) — V. (e, e2,2) is Lipschitz continuous from R? x R to R, and
nondecreasing with respect to the first two variables;

(H2) There exists emax > Amin > 0 and 0 < Re < Ry < Ry, with Ry > epax, such that for any z € Z,
for any (e1,e2,7) € R2 x R,
(i) V.(e1,ea,2) =0if (61 < Apin and 2 < —Ry) or if (e3 < Apin and z = —Ry),

(11) ‘/;(676271') = ‘/z(emaxa 62,.’£) and Vz(ela 6,.%) = Vz(ela €max; (E) if e = €max;

(H3) There exists VO, ..., VE : [0, +00) — [0, +0) such that

Vo(el) if x < _RO
V(er,e2,m) =4 i
(e1,e2,7) { Vzk(€2) if £ >0and T(z) = k.
(Hy) For any z € Z and any k € {0,..., K}, there exists hfnax,z € (Amin, émax] such that p — VZk(p) :

and constant on [h¥ +0);

increasing and concave in [Apiy, b N ax.2

max,z]
(Hs) There exists £ > 0 such that, for any z € Z,
(i) Vi(e1,eq,z) = 1720(61) if ey < ey, x < —Rs and V, (e, e, ) < k,
(ii) 0.V.(e1,ea,2) = 0if x € [-Ry,0] and V,(e1,es,z) < K,

(iii) V.(e1,e2,x) > 01if e1 A €2 > Apin.



Note that, by assumption (Hs), we have f/Zk(e) =0if e < Apin and f/zk(e) = f/zk(emax) if € > emax-

Some comment on the assumption are now in order. The assumption that Z is finite is useful
throughout the proofs but could be relaxed; as this would introduce an extra layer of technicalities, we
prefer to keep this condition for simplicity. Assumption (Hz) is standard in the analysis of leader-follower
models. The existence of A, prevents vehicles to collide (and could correspond to the size of the
smallest vehicle for instance). The existence of enay just says that the vehicles do not take into account
the vehicles too far ahead. Assumption Ry > enax can be made without loss of generality. Assumption
(H3) means that the roads are homogeneous outside the bifurcation. This formalizes the fact that we
concentrate here on a single bifurcation. Assumption (Hy) is also standard in the analysis of leader-
follower models. There is one restriction though: the minimal distance such that the velocity has to be
positive (i.e., here Ani,) has to be the same for all vehicle and is not allowed to depend on the type
of the vehicle; this restriction is related to the last (and technical) assumption (Hs). Assumption (Hj)
has to do with the behavior of vehicles with slow velocity on the junction and ensures that the vehicles
starting with a flat initial condition (U;(0) := €¥4);cz (where k = 0if i <0 and k = T} if i > 0 and €* is
such that H*(—1/e*) = min, H*(p)) have a velocity bounded below by a positive constant independent
of time and position (Lemma. This last property is instrumental throughout the proofs. Assumption
(Hs), without being unrealistic, is a little restrictive, but we do not know if it is possible to relax it. We
illustrate these assumptions by an example.

An example. Let 0 < 73 < r9 < r; < rg. Fix three smooth and nonincreasing maps §; : R — [0,1]
such that &;(z) = 1 for x < —r;_1, &(x) = 0 for x = —r; (i = 1,2,3). Fix also § > 0 and, for any
ze Zand ke {0,...,K}, WF:[0,+0) — [0,+) a smooth and nondecreasing map with W, (0) = 0,
W.(s) = W.(3) for any s > 5; we also assume that WP is increasing on [0, 5]. Then the map defined by
e1,e2=20,2€R, z€ Z and k =T(z) by

Va(er, ez, @) =61 (2)W2 ((e1 — Amin) 4 ) + (1 — &2(2))a ()W ((e1 A €2 — Amin) +)
+ (1= &)W (&) (er A e — Amin)+ + (1 — &3(2)) (62 — Amin)+)

satisfies the required conditions with Ry = 19, R1 = 9, Ro = r3 and 17Zk (p) = WF((p — Amin)+). The
complicated expression of V expresses the transition between a configuration in which the vehicle drives
at speed ‘N/ZO and considers only the vehicle in front on road 0 to a configuration in which it drives at speed
f/zk and considers only the vehicle in front on road k. Namely, before —rg, the vehicle, driving at speed
‘720, takes into account only the next vehicle on road 0. Between —ry and —ry, the vehicle, still driving at
speed VZO, slows down in order to take also into account the next vehicle on the road k. Between —r; and
—ra, the vehicle adapts its speed to road k (passes from velocity \N/ZO to f/Zk) Between —ry and —r3, the
vehicle, driving at speed f/zk, looses track of the vehicle which was in front on road 0 and only considers
the vehicle in front on road k after 0.

1.3 The homogenized velocities and Hamiltonians.

Let VnklaX,Z = Vzk(hﬁ]axyz). Under assumptions (H1)—(H4), the map f/Zk : [Amin,h’fnaxyz] — [O7Vrrk1:ax,z] is
increasing and continuous for any z € Z and any k € {0,..., K}. We denote by (V¥)~! its inverse.
Let
0 . ) —k : 7k
= inf V' (emax), = f V. (Emax)- 7
v ;23 z (6 ) v zEZ}'?(z):k (e ) ( )

We recall from [19] the definition of the homogenized velocities V¥ and homogenized Hamiltonians: V°

is the inverse of the continuous increasing map defined on (0,7°) by v — E [(Vgo)_l(v)]. We note that
VY is defined on (Apin, E [(VZOO)_l(T/O)]). We extend it for any e € [0, Ayin] by VO(e) = 0 and for e >
E [(Vgo)_l(ﬁo)] by VO(e) = #°. In the same way we define V¥ as the inverse of the continuous increasing

map defined on (0, %) by v — E [(VZ’“O)_l(v) | Ty = k] It defines V* on (Apin, E [(f/go)_l(@o) | Ty = k])



We extend it for any e € [0, Apin] by V*(e) = 0 and for any e > E [({7}0)—1(@0) | Ty = k;] by VE(e) = o¥.
The maps V¥ (for k € {0,..., K}) are continuous and bounded on [0, +o0).
We set, for any k € {1,... K},
HO(p) = pV°(=1/p). H*(p) = pV*(=1/(n*p)), p € (=0,0),  H"(p) = H"*(p) =0, Vp >0

and

Ay = in H"(p). 8
0= ofbax,  min (p) (8)

By Assumption (H4), for i € {0,..., K}, H* is convex in (—1/(7%Amin),0) (see Lemma [A.4)).

A last set of notation will be needed in order to define the condition at the junction: for k € {0, ..., K},
we denote by H¥* (resp. H" ™) the largest nondecreasing (resp. nonincreasing) map below H¥.

1.4 The main result

The main result of the paper states that the system homogenizes: let (Uio "“Yiez be a deterministic family

of initial conditions satisfying the compatibility condition: for any i € Z,

U 2 UP + Aun if UG < =Ry and U > UP + Apyy for any i € Z. (9)

Up to relabel the indices, we also assume that U, < 0iff i < 0. Let U* be the solution of (@ with initial
condition (Uio’e)iez. Let us define, for k€ {1,..., K} and (z,t) € R x [0, +00),

N (z,k,t) = Z 5U;(t)(($7+00)) - Z 5U;(t)((—oozl”])~ (10)

i€Z, 1<0, T;=k €Z, 1>0, T;=k

and set for x <0
N“(z,0,t) = >0 Sy (@, +00)).

i€Z, i<0
Then we introduce the scaled quantities
k\—1 nTe,w
Ve (2 b 1) — e(we.l New(z/e k,t/e) Y(x,k,t) e R x {1,...,K} x [0,+00) (11)
eN<¥(x/e,0,t/€) V(z,t) € (—o0,0] x [0, +00)

Theorem 1.1. There is a set Qg of full probability and a constant A < 0 (the fluz limiter) such that, if
(UZ-O’S)ieZ is a family of initial conditions such that the associated scaled function ve(-,-,0) defined by
(with t = 0) converges locally uniformly in R to a Lipschitz continuous map vy : R — R, then, for any
w € Qo, V¢ converges locally uniformly in R x [0,+0) to the unique continuous viscosity solution of the

Hamilton-Jacobi equation with fluz limiter A:

O+ H(0yv) =0 in 702 x (0, +o0)
o + max{A, H*" (dgv), H"(01v),..., HS (0xv))} = 0at 2 = 0 (12)
v(z, k,0) = vy(z, k) inR.

Let us recall the notion of viscosity solution of . For this we define the set of test functions
CH(R x (0,+00)) as the set of continuous maps ¢ : R x (0,+00) — R such that the restriction to each
branch of R is of class C' on this branch and ¢;¢ exists and is continuous everywhere. We denote by
Ox9(0, t) its derivative at = 0 on the branch &k (namely, dx¢(0,t) = 0,¢(0, k, t), which is well-defined by
continuity).

We say that a map v is a viscosity solution of if v: R x[0,400) — R is uniformly continuous,
and if, for any test function ¢ € C*(R x (0,+00)) such that v — ¢ has a local maximum (respectively
minimum) at (z, k,%) € R x (0, +o0) one has

0:6(%, k., T) + H"(0,0(2,k, 1)) < 0 if 7 #
0:0(0,) + max{A, H** (3¢(0,1)), H"~ (016(0,1)), ..., H*~ (9 $(0,8))} <0 if
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2 Properties of the solution

In this section we investigate two important properties of the solution: the distance to the next vehicle
and the finite speed of propagation.

Throughout the paper we need to define the solution (U;) of (@ for a finite number of indices, namely
for i € {i1,...,i0} where ig,i1 € Z, iy < 9. We say that (U;)e(s,,...io} is @ subsolution (respectively a
supersolution) of (6) on a time interval [0, T if, for any i € {i1,..., 4o}, the map ¢ — U;(t) is nondecreas-
ing, Lipschitz continuous with a Lipschitz constant not larger than ||V, and if, for any i € {i1,... 40}
with gz < io,

CUR(0) < Ve (U (1) ~ UF (0, U ()~ U2 (), UR (1)) W e [0.7)

(resp.

%Ui“(t) > Ve (Ui (8) = UP (1), Uge () = U (1), U (1)) Ve [0,T].)

2.1 Basic properties

Given an initial condition (U?);cz satisfying the compatibility condition @[), there exists a unique solution
U = (U;)iez to @ Moreover we have the following basic comparison principle: if (Us)iez and (U;)iez
are two solutions of (6] such that U;(0) < U;(0) for any i € Z, then U;(t) < U;(t) for any i € Z and any

t = 0. These results are standard and are easy consequences of Lemma below.

Lemma 2.1 (Basic ordering). Let ig,i1 € Z with iy < dg, T > 0 and (Uy)ieqi,,....io} be a solution
of (6) on the time interval [0,T] with (U;(0)) satisfying the compatibility condition (9). We have
Ui(t) < Uj(t) — Amin for any i1 < i < j < ig such that ¢; < iy and ¢; < iy and any t € [0,T] with
U;(t) < =Ry or U;(t) < —Ry. In addition, for any i € {i,..., i} with ¢; < ig and any t € [0,T] ,
Ul(t) < Uy (t) — Anin-

Recall that Ry and Ay, are defined in Assumption (Hs). Note that, after the junction, the order is
not necessarily preserved among the vehicles if they have not the same type.

Remark 2.2. We note for later use that, if U;(t) < —Ry and ¢ < j, then U;(t) < U;(¢) — (j — ¢)Amin-

Proof. To prove the first claim, it is enough to check that U;,_;(¢t) < U;(t) — Apin for ¢t € [0,T] if
Ui—1(t) < —Rg or U;(t) < —Ry. We start with the first case. Assume by contradiction that there
exists ¢ € {iy + 1,...,i0} and a time s € [0,7] such that 6 := Apyn — (Ui(s) — Ui—1(s)) > 0 and
Ui—1(s) < —Ry. Let 7 > 0 be the largest time such that U;(t) — U;—1(¢) = Amin — 6 on [0,7). Note
that 7 < s, U;(7) — Ui—1(7) = Amin — 0 and U;_1(7) < —Ry. Then, for € > 0 small enough, the map
t — U;(t) — Ui—1(t) + ¢/(7 — t) has a minimum on [0, 7), which is less than Ap;, and reached at a time
t € (0,7). By optimality condition we have

VZi(UiJrl(E) - Uz(f)7 UZ:‘ (E) - Ui(f)v UZ(E))
- VZi—l (Ul(i) - Ui—l(z)a U&:—l (ﬂ - Ui—l(i)a Uz—l({)) + 6/(7_ - 5)2 = 07
where by Assumption (Hs) the second term vanishes because U;_1(t) < —Rp and U;(#) —U;_1(t) < Amin-
So there is a contradiction and we have proved that U;_;(t) < U;(t) if U;—1(t) < —Ra.

Let us now check that U;—1(t) + Apin < U;(t) if U;(¢) < —Rs. Let 7 be the first time (if any) such
that U;_1(7) = —Rs. We have just proved that U;_1(s) + Amin < U;(s) if s € [0,7]. Thus U;(1) > —Ra,
which implies that ¢ < 7 and proves the claim.

The proof of the second statement is analogous: if there is i € {i1,...,i0} with ¢; < ip, a time

s €[0,T] and 6 > 0 such that U;(s) > Uy, (s) — Apin + 6, then we look at the largest time 7 such that
Ui(t) < Uy, (t) — Amin + 6 on [0,7]. We have U;(7) = Uy, (7) — Amin + § and, by the previous step, we
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know that U;(7) > —Rs. Let ¢ € (0,7) be a minimum point of the map t — Uy, (t) — U;(t) + ¢/(7 — t) on
[0,7). For € > 0 small enough, this minimum is less than Ap,;,. Then by optimality we have
Vz,, (Up1(t) = U, (1), U, () — Ur, (), Ue, (1))
— Vz,(Uita(8) = Us(8), Uy, () = Ui(1), Ui(F)) + ¢/ (7 — 1)> = 0,

where the second term vanishes by assumption (H2) because U;(t) = —Re > —R; and Uy, (t) — U;(¢) <
Amin- So there is a contradiction and we have proved that U;(t) < Uy, (t) — Amin- O

2.2 The maximal distance to the next vehicle

In this part we investigate the maximal distance to the next vehicle. This question will play an important
role in the proof of Theorem Here we work in a deterministic setting: we fix a deterministic sequence
(zi)iez in Z such that ¢; ;== inf{j > i+ 1, T(2;) = T'(%;)} is finite for any ¢ € Z. We consider the system
of ODEs

d
gUi(t) =V, (U;i11(t) = U;(t), Uy, (t) — U;(t), Us(t)) 1€Z, t=0, (13)
Let us introduce some notation for the slow vehicles. Recall that
70 := inf VO (emax), o = inf  VF(emax)
z€Z zeZ, T(z)=k

and let z*

min

(where k € {0,...,K}) be elements of Z such that V9 (emax) = 9° and, for k& > 1,

T(zF.,) =k and VE (emax) = 0*. The types 2%, correspond to “slow vehicles”, in the sense that their

min

maximal velocity is the smallest.

Lemma 2.3. Lett > 0, iy € Z. Assume that T(z;,) = 22, and that (U;)ez is a solution to on [0, ]
with an initial condition satisfying the compatibility condition @D If Ui, (t) < —Ry, then for any i < i1
we have

Ui1 (B < Ul(i) + Ui1 (0) - Uz(o) + emax(il - Z)

Proof. We prove by induction on m € N that Uy, (t) < Uy, - (€) + Ui, (0) — Uy —n(0) + €maxm. The result is
obvious for m = 0. Let us assume that it holds for some m —1 with m > 1. We set i := 7; —m. We argue
by contradiction and assume that there exists ¢ € [0, ¢] such that U;, (¢) — U;(t) > Uy, (0) — U;(0) + emaxm.
Then for € > 0 small, the maximum of t — U;, (t) — U;(t) — €¢/(t — t) exists on [0,?) and is larger than
Ui, (0) — U;(0) + emaxm. We denote by t. the point of maximum and we remark that t. is positive by
definition. By optimality condition, we have

V2 (Ui (te) = Uiy (te)) = V2 (Ui (te) = Uilte)) — ¢/(E = t)* = 0. (14)

On the other hand, by induction assumption, we have U;, (t.) —U;+1(t.) < Ui, (0) —U;4+1(0) + emax(m—1).
So
Ui+1(te) - Ui(ts) = Ui (te) - Ui(tE) - (Ui (tE) - Ui+1(t6))
> Uil (O) - UZ(O) + CmaxT — (Uz (O) - U2+1(O) + 6max(Tn - 1)) = €max;
so that, by assumption (H2) 3 .
V2 (Uira(te) = Ui(te)) = V2. (emax)

while, as z;, = 20

min>

‘72(:1 (Uii1(te) — Uiy (L)) < ‘72(3 (émax) = v’ < f/z()i (€max)-

This contradicts and proves the result. O

Lemma 2.4. Let (U;)icz be a solution of with an initial condition satisfying the compatibility
condition @[) Let iyig € Z and k € {1,...,K} with ig > i, T(2;) = T(z,) = k and z, = 2%, . If
Ui(s) = 0 for some s =0, then

Uiy (1) S Ui(t) + Uiy () — Ui(s) + emaxti{j € {i + 1,.. . do}, T(z;) = T(2:)} Vt > s.
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Proof. We proceed by induction on the value of n := #{j € {¢ +1,...,40}, T'(2;) = T(2)}. Let us fist
assume that n = 1. Then iy = ¢;. We argue by contradiction and assume that there exists ¢ > s such that
Up, (t) — Ui (t) > emax + Ui, (s) — Us(s). Then for € > 0 small, the maximum ¢, of t — Uy, (t) — U;(t) — et?
exists on [s,+o) and is larger than emax + Uy, (s) — U;(s). Hence t. is larger than s. By optimality
condition, we have (setting k = T'(2;))

VE (Us,, (te) = Up,(te) = VE(Us,(te) = Uilte)) — 2ete = 0. (15)
As Uy, (te) — Ui(te) = emax, we get, by the definition of ig = ¢;:

VE(Us, (te) = Uite)) = VE(emax) = —2ete + VI (Us,, (te) — Us(te)) < ",

Zmin

which contradicts the definition of 7*. So the result holds for n = 1.

Let us now assume that the result holds for n — 1 (where n > 2) and let us prove it for n. We
argue by contradiction in the same way and suppose that there exists ¢t > s such that U, (¢t) — U;(t) >
Uiy (8) — Ui(8) + nemax- As above, for € > 0 small, the maximum ¢, of t — U, (t) — U;(t) — et? exists on
[s, +00) and is larger than U;,(s) — U;(s) + nemax. By the induction assumption we have

Uin(T) = Uy, (1) < Uiy (8) — U, (s) + (n — 1)emax V1 > s.
Hence

Ue,(te) = Ui(te) = Uiy (te) — Us(te) — (Ui, (te) — U, (te))
= UZU( ) (8 + Nemax — (Uzo (S) - Ull(s) + (Tl - l)emax) 2 €max-

Moreover, by optimality condition, we have
VE (Ug,, (te) = Uig(te)) = V2 (Ue, (te) = Ui(te)) — 2ete =0,
which leads to a contradiction as above. O

Lemma 2.5. Let (U;)icz be a solution of with an initial condition satisfying the compatibility
condition (9). Assume in addition that there exists § > 0 such that (d/dt)U;(t) = & for all t > 0 and
all i € Z. Then, there exists a constant Cy depending on V and & only such that, for any i,ig € Z and
ke{l,...,K} withig >, T(2) =T(z,) = k and z, = 2¥,,, we have

Uio(t) < Ul(t) + Oo(UZ(O))_ + UiO(O) — Ul(O) + Coﬁ{] € {Z +1,... ,io}, T(Z]) = k} vVt = 0.

If in addition there exists i1 = ig such that T(z;,) = and U, (0) < —Ryg, then

Ui, (t) < U;(t) + Co(1 + U;, (0) — Ui (0) + i1 —9) vt = 0.
Proof. 1f U;(0) > 0, the first result holds by Lemma [2.4] Let us now assume that U;(0) < 0. We set
n = ﬁ{j € {Z +1,...,%0}, T(z;) = k}. Let t; = inf{t > 0, U;(t) = 0}. Then, as (d/dt)U;(t) = 0, we have
t; < 0 1(=U;(0)). By Lemma [2.4] . we have
Ui, (t) = U;(t) < Uy (t:) — Ui(ti) + emaxn YVt =15
On the other hand, for ¢ € [0, ¢;], we get
Uiy (t) = Ui(t) < Uiy (0) = Ui(0) + [Vt < Uiy (0) — Us(0) + C(Us(0)) -
This proves the first part of the claim.
Assume now that U;, (0) < —Rg. Let ¢ = inf{t > 0, U;, (t) = —Ro}. We know from Lemma [2.3| that

Uz'l (t) < Uz(t) + Ui1 (0) — UZ(O) + emax(il — ’L) Vt e [O,ﬂ
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This implies by Lemma [2.1] that
Ui, (t) < Ui(t) + Ui, (0) — Ui (0) + emax(in — 1) vt € [0,]. (16)
Let t; = inf{¢t > 0, U;(t) = 0}. Then, as
Ui(t) = Ui, (t) — (Ui, (0) = Ui(0) + emax (i1 —4)) = —Ro — (Ui, (0) — U;(0) + emax(i1 — i),
while U;(t;) = 0, we have, since (d/dt)U;(t) = 0,

t <0 (Ui(t:) — Us(f)) < 61 (Ro + Ui, (0) — Ui(0) + emax(in — 7))
< CA+U;(0) —U;(0) + i1 —14).
Note that U;, (£) < U, (t) = —Ro < 0. So, as U;(t;) =0
Uiy (ti) — Ui(t:) < Uiy (i) — Uiy (1) < [V][oo(ti — 1) < C(1 + U3, (0) — Ui(0) + iy —d).
By Lemma we obtain
Uio(t) = Ui(t) < Uiy (t:) — Ui(ti) + emax(io — ) < C(1 + Uy (0) = U;(0) +i1 —3)  Vi=t,.  (17)

Finally, for t € [¢,t;], we have

Uio(t) — Ul(t) < Uio (tl) — Uz(tl) + HVHoo(tz — t) < C(l + Ui1 (O) — Ul(O) + 41 — Z) (18)
Combining , and proves the second part of the claim. O]

2.3 Approximate speed of propagation

The approximate speed of propagation says that the behavior of a vehicle mostly depends on a finite
number of vehicles in front of it. To describe this result we need to introduce a few notation. Given
T € Z, we define by induction

T =T, 1) = it }Sup{i €Z, T =k, ¥ < :;,I(T)}.

We note that the J,(T') are random and decreasing in n. By construction, if ¢ < J,(T), then i + 1 <
Jn_1(T) and /; < Jn_l(T).

Lemma 2.6 (Approximate finite speed of propagation on the junction). Fizio € Z, L€ N, T = 0 and
E € F an event with a positive probability. Assume that, in E, (U;)iegi,....io+L} 5 @ (non decreasing)

,,,,,

subsolution while (Ui)ie{im._,iﬁL} is a supersolution of the system

d

an(t) = Vz,(Uit1(t) = Ui(t), Ue, (t) — Us(2), Ui(t))

fori=ig,...,Ji(io+ L) and t € [0,T]. Suppose in addition that, in E Ui (0) < U;(0) fori € {ig,...,io+
L}. Then, for allneZ, n > 1, for allw € E and for all i € {ig,...,J,(ig + L)},

Ui(t) < Ui(t) + C 27ePt wie0,T],

where, § = v + 2C1, with v 1= sup,cz (|1 Vzlloo + [02V2]w0) and Ci 1= sup.cz |02 V.|, and where C
depend on B and on |V | only.

Proof. We work in E all along the proof. Let us set W;(t) = U;(t) — Ui(t) for i = ig, ..., Ji(io + L). Since
we work with sub and super-solution, we extend the velocity V. (p,z) by 0 if p < 0. Let ng be the largest
integer such that J,,(ip + L) = ig. We define, for n € {1,...,ng},

M, = sup sup e P [Wi(s)]-.
i€{ig,....,Jn (i0+L)} s€[0,T]
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Note that, as W;(0) = 0 and (d/dt)W;(s) < ||V]e, we have

M; < sup sup e 7|V ]ws < C,
i€{io,..rio+L} s€[0,T]
where C' depends on 3 and |V only. The main step consists in showing that, for all n € {2,...,np},
M, < %Mn_l. (19)
Fix n€ {2,...,n9} and i € {ig, ..., Jo(io + L)}. We have, for t € [0,T],
%Wi(t) > Vz, (Ui (t) = Ui(t), Up, (8) = Ui(1), Us(£)) = Vi, (Ui () = Us(t), Ue, (t) — Us(t), Ui(1)).
So
%Wi(t) > A1 () (Wiga (t) — Wi(t)) + Aia(t)(We, (t) — Wi(t)) + Bi(H)Wi(t)
where

1
Ai,l(t) 2:/ (71V21(w1( ))dT Alg / 62VZ wl( d’T B / FSVZ U)l
0
with wl(t) = (’LUi,1(T),w27i(t),wg,i(t)),

wi (1) = (1 - 7)(U- 1(t) = Ui(t) + 7(Usga(t) — Ui(1)),
wi(t) = (1= 7)(Ue, (t) = Ui(t)) + 7(Us, (t) = Us(t)) and ws i (t) = (1 = 7)Us(t) + 7Ui(1).
We note for later use that 0 < A;; <7, 0 < < v and |B;| < Cy. Setting A, = A; 1 + A; 2, we find

< Ao
Wi0) =0 e { - [ (4= BGs >d}+/0A“<>exp{ [ = Botmar} W oy

+/(:Ai,2(s)exp{—/ dr} Wy, (s

As W;(0) = 0 and A; > 0, we infer that

el < [ A () exp {— [ - t dT}

+/OtAi,2(s) exp{ /(A2 B;)(t )dr}[W&( )]_ds

S

< [ Aus) exp{— / (A; — B))(r)dr +ﬁs}eﬁs<[wi+1<sn_ v Wy, (s)]-)ds
< sup (e ([Wipa ()] v [We,(s)]-) / Az-<s>exp{— / <Ai—Bi|><r>dT+ﬁs}ds

We now estimate the last term in the inequality above. After an integration by part, we have, since
5> > |Bland 0< A; <7,

[ e = [ 1B+ s as
B /Ot Ai(s) exp {—/: Ai(T)dT}eXp{/: |By|(1)dr + Bs} ds
: [exp{/stmi ) 'B”)(T)d”ﬂs}]; -/ eXp{/:Mi ~ B r)dr + s} (1B + B)ds

<’ —exp {— /Ot(Az- - Bz‘|)(7—)d7'} - /t exp {y(s —t) + Bs} (=C1 + B)ds

0

t
I / exp{(y+ B)s} (—C) + B)ds
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So
/Ot Ails) exp { / (A = Bl + /33} s

<eft —

ot _B=C (Pt — ) < YHC e _ Lﬁt’
v+ 6 Y+ 68 2
by the choice of g = v + 2C;. This shows that
1
sup e P[Wi(s)]- < 5 sup e P ([Wisa(s)]- v [We,(5)]-)-
s€[0,T7] s€[0,T7]

Asi < Jp(ip+ L), i+1 and ¢; belong to {ig, ..., Jn—1(io+L)}. So the right-hand side is less that M,,_;/2.
Taking the supremum over all i € {io, ..., J,(io + L)} gives (19).

By induction, we obtain that, for all n < ng,
M, <2 ""Yan < o2

from which we derive the result. O
Next we investigate the behavior of J,, for large values of n:
Lemma 2.7. There exists a constant o > 0 such that, for any T € Z, any € € (0,1] and any n € N,
P[|J.(T) — T + an| = en] < 2exp{—e’n/C}.

Proof. Let T € Z and X,, := J¥(T), n € N. Then (X, 41 — X,,) is a family of i.i.d. nonpositive random
variables with law given by (for all m € N)

K
P[X, — Xo < —m] <P[Ie {1, . Kht{ie (T —m,... T} Ti=kp<1|< Y m1—rh)m!
k=1
1+m
2

< Kmﬂ'm_l < C( )m7
where 7 = maxy (1 — 7%) < 1 and C depends on 7 and K only. Therefore X; — X satisfies Bernstein’s
conditions: there exist positive numbers v and ¢ (depending on 7 only) such that E [\Xl — X0|2] <v
and E[|X; — Xo]7] < qlve?=? for any integer ¢ > 3 (see Subsection in the Appendix). Let us set
a =E[Xy— X1] > 0. From Bernstein’s Inequality (Corollary 2.11 in [14])

B[|J,(T) — T + an| > «] < 2exp{—a?/(C(n + 2))}

for some constant C' depending on 7 only. This implies the result for e € (0,1]. O

3 The time function

The goal of Sections|3|is to build the flux limiter at the junction. For doing so we consider the solution of
our system starting with a “flat initial condition” and look at the time it takes to reach 0 from a position
(far) on the ingoing road.

Let us fix from now on e = (e¥)r—o.. x such that H*(—1/e*) = min, H*(p). We note for later use
that e¥ > ¥ A in, where Ay, is defined in Assumption (H2). We define (U¢;)iez as the solution of (®)
with initial condition defined for any ¢ € Z by

e e ifi<0
et ] eFj ifi>0and T, = k.

Then we set

02 (t) = inf{i > 0, U_,(t) < 0}.
The quantity 6% (¢) is the number of vehicles having gone through 0 at time ¢. The goal of the section is
to show, by using a concentration inequality, that 6.(¢)/t has a.s. a deterministic limit as ¢ — +o0.
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3.1 Preliminaries

Let us collect some basic facts on the (Uy;)icz and on 6.. Let us set vk = VF(ek/rk) for ke {0,..., K}
(where ¥ = 1 by convention).

Lemma 3.1. We have mingeo,... k) vf > 0.

Proof. As e > mApyin and Z is finite, assumption (Hs) implies the existence of C' > 1 such that VO(e?) =
C~! for any z € Z. Thus (VO)~1(C™') = E[(VZ,)"'(C1)] < €°, which shows that v? = V9(e?) = C~'.
The proof for v¥ (for k = 1,..., K) works in the same way.

O

Lemma 3.2. There exists § > 0 such that

%Um(t) >6 V=0, Viel

Proof. Recall the definition of s in assumption (Hs). Let us set e™it = ming—o, .. K ek and

0 :=min{xk , min vf , min V(e ™ x), min V,(R; — Re 4+ Anin, R1 — Ro + Apmin, @)}
k=0,..., K zeR, zeZ zeR, zeZ

By Lemma the fact that e™® > A, and assumption (Hjs-(iii)) (combined with the fact that Z
is finite and that V is independent of x for x ¢ [—Ro,0]), we have that 6 > 0. Fix n € N large (say,
n > Ry/e®) and let U™ be the solution to () with initial condition defined by for any i € Z, |i| < n by

(0) = % if —n<i<O0
eFi if0<i<mnandk=T;

If |i| > n we define U/*(0), by induction by setting, if i < —n,
Vg, (U(0) = Ul1(0)) = ¢

and, if £; > n and k = T, -
VZ (UZ(0) = U(0)) = v

Then U™ converges locally uniformly on Z x [0, +0) to U, as n — +o0. We are going to show that the
claim holds for U™, which implies the claim for U..
Let us first note that the claim holds for t = 0. Indeed, by definition of U!*(0), we have, if —n < i < 0,

d o
U0 =V, (%, U7 (0) = U(0),€%) = Vz, (e™™,e™ ei) = 6,

while, if ¢ > 0 and k = T;, then

d vy _ ok ey i VE (G —i)eR) =6 if £; < n,
an (0) = Vz, (UL (0) = U (0) = { vk =6 otherwise.

Finally, if ¢ < —n, then

d n 7 n n
U (0) = V2, (U4, (0) = U (0) = v¢ = 6.
So we have proved that, in any case, £U™(0) > 6.

By Lipschitz continuity in time of I(t) := infsez & UP(t), we have that I(t) > §/2 for t > 0 small.

3

Let [0,T] be an interval on which this inequality holds. We are going to show that actually I(t) = § on

[0, T'], which is enough to prove the claim. For this we argue by contradiction and assume that there is
(t,7) € [0,T] x Z such that %Uf(f) < §. Then, for € > 0 small enough,
d €
I:= inf —UMt) + =
te[Ol,?),ieZ dt "’ &)+ t—t
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is less than §. In the next step we show that the infimum is actually a minimum. For this we first note
that U(t) := U"(0) + 02t for i < —N and ¢ € [0, 7] is a solution to (6]) for N large enough depending
on T and n. So, by the approximate finite speed of propagation (Lemma applied to U and U for
i< —N and t € [0,T], we have for any ¢ € [0, T]

lim U(t) — UM0) = t?,

i——00

so that

lim aUzn( )= lim V2 (UL, (t) = UMt) = lim Vg (U41(0) = UF(0)) = vl = 6.
i——00 i——00 i——00
On the other hand, by the construction of U™, we have for i > n and T; = k that U"(¢) = U (0) + to¥,

so that p
i —Urt) =v* = 6.
i~>+og,nTi=k: dt U (t) = ve
This shows that the infimum in the definition of I is a minimum: let (¢g, %) be a minimum point such that
ip is maximal. Recalling that I(0) > §, we have to > 0. By the optimality of (¢g,4) and the maximality

of ig, we have

d d d d
p i1 (to) > 7 —Uj (to) aﬂd 0, (to) > dtU (to)- (20)

By optimality of ¢y > 0, we also have (omitting the dependence of Vz,, with respect to its parameters to
simplify the notation)

d d d

d d
0= 661VZi0 (dt Zo+1(t0) dtUiTCL)(tO))—i_ae?VZ’io (dtUe ( ) dtUZS(to)>+a$VZ U”(to)

€
o dt (t —t9)2

By , all the terms are nonnegative except perhaps aCUVZiO' By assumption (Hjs-(ii)), we cannot have
Ult(to) = —Ry since in this case 0,Vz, > 0. So Ul (to) < —R:. Now, if Uy, (to) = U}, (to), then by
assumption (Hs-(i)), Vz,, does not depend on x and therefore 0,Vz, = 0. Thus U, (to) < Uf 4 (to).
By Lemma with ¢ = 49 + 1 and j = ¢;, > 4o + 1, this implies that UZO (to) = —Ra + Amin and, hence,

U1,0+1<t0> R2 + Apin. Thus

d n n
%Uio(to) = VZiO (Rl — Ry + Amile — Ry + AminanO(tO)) = 5,

which is again impossible. O

A immediate consequence of Lemma [3.2)is that U (t) — +0 as t — +00 and therefore 6, (t) — +o0
as t — 400. Next we show a bound from above for 6,.

Lemma 3.3. There exists a constant Cy > 0 such that
0<0c(t) —be(s) <Colt —s+1) YO<s<t

Moreover, fort = 0,

0.(t) < Chyt.
Proof. Let us first prove the second statement. For this we note that, for any i > |V ,t/e°, we have
Uei(t) < =% + V]t <0

So 0.(t) < |V eot/e®, which proves the claim.

We now prove the first statement. Let ig := —6.(s). Then Ue o (8) < 0. Let § be the constant given
by Lemma 3.2} Assume first that s > R2/5 Then, by Lemmal[3.2} Ue i, (s — R2/8) < Ue iy (s) — Ry < —R».
Recalling Remark [2.2] after Lemma [2.1] we have, for any i <o — |V o (t — s + R2/8)/Amin,

Ue,i(t) < Ue,i(s—R2/8)+|V | (t—5+R2/d) < Ue sy (s—R2/0)—Amin(i0—1)+|V |0 (t—s+R2/J) < =Ry < 0.
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So, for any i < ip — |V (t — s + R2/6)/Amin, we obtain U, ;(t) < 0. This shows that
Oe(t) < —io + |V]oo(t — s+ R2/0)/Amin < 0c(s) + C(t— s+ 1).

If t < Ry/d, the conclusion obviously holds. Finally, if s < Ry/6 and ¢t > Ry/d, then, by the previous
inequality and the first part of the proof, we have

0.(t) <Oc(Ra/8) + C(t — Ry/5 + 1)
<V Ra/(3%) + C(t — 5 + 1)

<O0c(s) + ||V ||wR2/(6€°) + C(t — s + 1)
<Oc(s) + C'(t —s+1).

3.2 A concentration inequality

In this section, we prove a concentration inequality for
O (t) = inf{i = 0, U _;(t) < 0}.
Theorem 3.4. There is a constant C' > 0 such that for any e € (0,C~] and any t = Ce™ 1,
Pl 0(t) — E[0e()]] > et] < Cexp{—¢*t/C}.

The proof requires several steps. The first issue is that 6.(t) depends a priori on all the Z;, even for
any ¢ > 0 large. In order to reduce this dependence, we introduce the auxiliary quantity 02" (¢) defined,
for any m € N large (say m > 2), by

0™ (t) = inf{i = 0, U™ ,(t) < 0}

where the (U;fi-)iez is the solution of @ where the sequences Z; and the initial condition U.(0) are
replaced into Z" and U2*(0) defined as follows:

gm ._ Z; ifi<m-—1
R B ifi=mandT; =k

min

and
Um(O)_ Ue,z(o) 1fz<m—1
i elim — 1) +eTif{je {m,...,i}, Ty =T} ifi>m.

Let us recall that the zr’;in are introduced at the beginning of Subsection Before proceeding, let us
collect several important properties of the U[;.

Lemma 3.5. 1. For each i€ Z withi <m —1, U}, is 0{Z;, j € {i,...,m — 1}}—measurable.

2. There exists § > 0 such that (d/dt)U(t) = § for any i€ Z and any t > 0.

3. There exists a constant C' > 0 such that
0<O0(t)—07(s) <C(t—s+1) and 07 (t) < Ct VO < s <t

T

4. Setting o :=inf{j =i+ 1, Z; =z} and o) =inf{j =i+ 1, Z; = 22, .}, we have

D) <UNE) +C(l+09, Am—i)  Yi<m-—1,Vt>0. (21)
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Proof. 1) Let us first check that U["(t) = U[(0) + Vzli (ek)t for any i > m with T; = k. Indeed, for

min
such any i = m, we have
d

m _ 17k k
LUz = Vh ()

min

while

Vzp (U5 (8) = UZ5 (), UL, (8) = UZ(8), UZ5(0) = VA (U2, (1) = UZ(t))

- ‘llx%\in( én’z't (O) o UZ(O)) - Vzl?:\in (ek)
The measurability of U"; for ¢ < m — 1 can then be checked by backward induction. For i = m — 1,
Ulln—1 solves (if we set T; = k),

d N
SUT (1) = VEUR ()~ UZ(0), £ 20, Ul y(0) = ¢ (m = 1),

Given Z;, the above equation has deterministic coefficients since Uy (t) = e*(m — 1) + VZ’X (eF)t. For
i < m — 2, it can be proved by induction in the same way that U[; satisfies an ODE with coefficients
which are o{Z;, j € {i,...,m — 1}}—measurable.

2) & 3) The existence of > 0 such that (d/dt)U[;(t) > ¢ is a consequence of Lemma (which is a
deterministic statement). In the same way, the estimate on 02" is an application of Lemma

4) Let us finally check (21I)). For this we use Lemma Fixi <m—1landlet k =T;, ig :=inf{j =i+
1, Z* = 28} and iy = inf{j > o, ZJ" = 20} (if this exists). Note that io = o A (inf{j = m, T; = k})
and iy = 03, if 0. < m. If €"i; < —Ry, then by the second part of Lemma we have

Ul () < U () <UL + Co(1L+US(0) = UM™0) +iy — i) <UL (H) + C(1+4y —4)  VE=0.

e,ig

Asi; <0 <m—1 we also have i; = Jgi < m, which proves the inequality in this case.

Let us now assume that e%; > —Ry. According to the first part of Lemma [2.5| we have
T, (8) S UT (8) S UT() + Co(e%) - + U (0) = UZS(0) + Cott{j € (i + 1, io}, T(Z]") = k}.
As €% > —Ry, we have

(e”)— < €’(iy Am—1i)+ Ry < e’(00. Am—1i) + Ry.

On the other hand, by the construction of the U["(0), we have U, (0) = (m A o;)ek. Finally, as by
definition of the Z" and of iy we also have (with k :=T;)

tieli+ ... ik, T(ZM) =k} <t{jefi+1,...om—1}, T(Z") =k} +1<o; Am—i+1L

This shows that
7 () SUD(t) + Clog, Am—i+1) vt = 0.

We now note that 0. and 07" are close.

Lemma 3.6. There exists a constant C > 0 such that, for any t = C and if m = [Ct],
B[16.(t) - 07'(t) | > C] < Cexp{—t/C}.

Proof. Note that (U, ;) and (U[";) solve the same equation for i < m — 1 with the same initial condition.
Lemma [2.6] on the approximate speed of propagation then states that there exists constants C > 0 and
B > 0 such that, for all ne N, n > 1 and i < J,(m — 1),

UM(s) = Uei(s)| < C 27" Vs >0,
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Fix ¢ > 0 and let us choose n = [8t/In(2)] + 1 and m = [(1 + a)n] where a > 0 is defined in Lemma[2.7]
In the event {J,(m — 1) > 0}, we have

|US(s) = Uei(s)l <C  Vsel0,t], Vi <O.
Let us check that this inequality implies in the event {J,(m — 1) > 0} that
|02 (t) — 0e(t)| < C. (22)

Indeed, if U (t) < 0, then U, ;(t) < C. Assume ¢t > Cd~! where 4 is defined in Lemma Then Lemma
implies that U, ;(t — C§~1) < 0. This shows that

fc(t —C5™ ) <07 (t),

and thus, by Lemma [3.3] that
Oc(t) — C" < 67 (t),

for some new constant C’. If t < C6~1, then, by Lemma
0.(t) <C" <0 (t) + C".
Therefore 0.(t) — 7*(t) < C’ in any case. The inequality
0 (t) — C" < 0.(t)

can be checked in the same way, by using points 2) and 3) of Lemma This proves (22)).
As holds in the event {J,(m — 1) > 0}, we get

P[l0.(t) — 67 (t)] > C]l < P[J(m—1) < 0] <P[J,(m) <0].
Recalling the choice of m and Lemma (with e = 1) we have
P[J.(m) < 0] <P[Jp(m) —m+an<—m+an+ 1] <P[J,(m) —m + an < —n] < Cexp{—t/C}.
This gives the result. U

The key step of the proof of Theorem [3.4] consists in establishing a concentration inequality for 67" (t).
To do so, let us set, for ne N, F,,, =0{Z;, ie{m—mn,...,m—1} } if n > 1 and F,,, 0 = {&,Q}. We
also set
Mn(t) =E [9?@) | ]:m,n] —E [9?@)] :

Note that (M, (t)) is a martingale with My(t) = 0.

As, by Lemma 07 (t) < Ct and {07"(t) < n} = {U™,(t) < 0} is Finmin—measurable for any
n € N, we have that M, (t) = 67"(¢t) — E[07*(¢)] for n = 7 := [Ct] for C large enough.

The next step is instrumental and consists in estimating | My, 41 (t) — M, (t)].

Lemma 3.7. For anyne N,
[ My41(t) = Mo (t)| < C(L+0g A m— (m—n)), (23)

where o° and o are defined in Lemma [3.5

Proof. Let us first remark that, for any n > 0, Hf(t)l{(,g@(t)g(m,n,l)f} is Fy,,n—measurable. Hence

[ M1 (t) = M ()] = [E[0"(8) | Frnnia] = EO7 () | Fonnll Lor (0> (m—n—-1)_}-
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In the next steps, we work in {U_, (t) > 0}. Let us introduce some notation. Given n € N and a
continuous componentwise nondecreasing map x = (z*,...,2%) : [0, +0) — RX, we denote by U™* =

(Uf’z’“’)igm,n,l the solution to

d -~ n,r,w
% i (T)
VZ;J(UZ’JF’?”(T) U™ (1), U™ (1) = U (1), U (1)) ifi<m—n—2, 6 <m—n—1,
= Vz;g(A:l_;gf’w(T)—CAff’z’w(T ,xTI(T)—UZLI“(T),Uf’m’w(T)) ifi<m-n—2,0>=>m-—n,
Ve (aho (1) = U™ (1), 2T (1) — U™ (1), U7 (7)) ifi=m—n—1,
with fori<m—n—1 o
cmaws | €% ifi<0
Ui (O)_{eki ifi>0and k =T;
where kg € {1,..., K} is such that 2% (0) < 2¥(0) for any k € {1,. , K} (if there are several minimizers

of 2¥(0) we choose the smallest one). An important property of the (U” ) s<m—n—1 is that they depend
on {Z;, i <m—n— 1} only. We also define

m (t) = inf {z >(m—n—1)_, U""(t) < o} .

m,w
n w
2 7(Ue,lmfn"”(k))k=1 K’

We note that U, (1) =U, =~ " (1) for any i < m —n — 1 and 7 > 0 where

K2

1"“(k) = inf{j > i, Ty = k}. (24)

U w R
Moreover, 07 (t) = 0. v, (k))k bR (t) in {US (1) > 0}, As 0™7(t) depends only on {Z;, i <

e,m—n

m —n — 1} while the U}, () are Fin n—measurable, we have, in {U[,",,(t) > 0},

e, M= W (k) ) 1 K

In the same way, we have

E[07(t) | Fruni1] <1+E [é”“’i(t)]

P Um,w )
z ( men—lwgy ), 1

.....

So
|Mn+1(t) - Mn(t)l < (25)
1+ ’E [é"H’j('f)] R -E [é"’w(t)] - ’1{9m<t>><m—n—1>f}~
w=(Ulm " 1“’<k)) =1,..., K w=<U17'£_""“(’<>> =1,...,K
Next we estimate the difference between E [é”“ 2( ] and E [ ] when & = (Ul”,f,’i‘)n_l‘w(k)) . .
=1,..,
and x (Ulm “’,M(k)) o (recall that we work in {U™_, (t) > 0}). For this we fix two C' maps
7 :[0,00) — RE such tﬁa‘é there exists ko € {1,..., K} and v > 1 with, for any k€ {1,..., K},
(d/dr)z*(T) = 6 and (d/dr)i*(t) =6,  aF=z"if k# kg
and — v 4 2™ (1) < #F (1) < 2™ (1) V1 = 0. (26)

Note that the conditions above are satisfied by & = (Uﬁm’ﬁdﬂ,_l,w(k))kzl,.._,x and x = (Ulﬁfn,w(k))kzl,_,,[(

withy=C(14+0%  Am—(m—n))and ky = T),_,, thanks to Lemma Note also that the U"**

Om—n

and §mrw satisfy the same conclusion as U, and 6, in Lemmas (with the same constant ¢) and
the proof being the same.
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The main part of the proof consists in showing that, under ,

B [om+1o@)] — B8 )| <+, (27)

For this we first check that
E [é"“@(t)] <E [éml@(t)] <E [én@(t)] + L (28)

The first inequality holds by comparison, which implies from assumption (26)) that U”Jr i( ) < "H ()
+

for any s > 0 and any ¢ < m —n — 2. For the second inequality, let us set W“’( ) = UMb le( ) for
i<m-—n and s = 0. Then W solves (since Z'§ = Z¥, T*Y =T and £*9 = (¥ — 1)
%Wi (1)
Vze (Wi (1) = WE(r), Wi (1) = WE(r), W (r)) ifi<m—-n—-26<m—n—1,
=3 Ve (WEL (1) = WE(r),2Ti () = WE(r),We(r))  ifi<m—n—2, 6>m—n,
Ve (ako(r) = We(r), 2T (1) = We(r),We(r)  fi=m—n—1,

w 60(7/—].) 1fz§1 N, T ,w .
Wi (0)—{ek(i1) ifi>land Ty = e = ) <Ui (O)forism—n—1,

Therefore by comparison

0T ) = W) < OP7() Ve 20, Wi <m—n 1,

which implies that . .
9n+1,x,nw(t) < en,m,w(t) +1

and gives the second inequality in after taking expectation.

Using (26)), the definitions of U;**"**(0) and U"**(0) and the fact that (d/dt)U}*""“(t) = § > 0

(since the gme satisfy the conclusion of Lemma , we get that there exists C; > 0 large (but which
does not dependent on m, n, w and %) such that

UMhmme () = UP90) Yi<m—n—1, (29)
and
P+ Oy =abt)  VE=0,Vke{l,...,K}.

We claim that, for some constant Cy > 0,

E [én@(t)] <E [é”*l’i(t)] +Cyy. (30)

To prove let We(t) = UM 579 (¢ 4 Cyy) for i <m —n — 1. For i <m —n — 1, W; solves, exactly
as above,

%sz( )
Vze (Wi (r) = W (), Wi (r) = W (1), Wi (1)) ifi<m-n—-24<m-n—1,
=4 Vze (Wi (r) =W (r),2 '(T+C’1’y)fo(T),Wi‘”(7)) ifi<m-n-—2 0>m-—n,
szw( Fo(r 4+ Cr1y) = W (r), 85 (1 + Cry) = WE(),We(r)) ifi=m—n—1,

WE(0) = U HHT(Cry) = U(0) for i < m—n — 1.
As #F(7 + C17) = 2%(7) and as V, is increasing in the first two variables, we obtain by comparison that

UMM ETe 4 4 Ory) = WEE) = UM (t) V=0, Vi<m—n—1.

(2
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Therefore R ) .
1+ 0”“’7”’71“’(15 + C1y) = 0% ().

Using Lemma (which holds for 6 as explained above), we obtain
02"}’ + én+1,i,71w(t) > én,w(t)’

which implies after taking expectation.

Combining and gives . Then recalling , we obtain . O

Let us set
Gi(t) = | M4 (t) — M;(2)].

and

[MIn = X&)% M = Y E[(E(®) | Fns] -

i=1

Following [I5], Theorem 2.1], the following concentration inequality holds:

P[|My] =z, [M]n + (M)n < y] < 2exp{—2?/(2y)}.

This implies that
P[|My| = o] < 2exp{—2?/(2y)} + P [[M], + (M), > y]. (31)

Lemma 3.8. There exists a constant C' > 0 such that
P[[M]n + (M)n > Cn] < CXp{**}
Proof. In view of Lemma [3.7] we have
&< CA+02  Am—(m—1)).
We first replace the right—hand side by a more suitable random variable. For k € {1,..., K}, let oF :=

inf{j >i+1, T; =k, Z; = 2k, }. Note that oF is independent of {Z;, j < i} and that supy oF > o;.
Then

min

K
|&(t) 21+ak Am— (m—1i)).

As agk A m is Fp, ;—measurable, we have

m—i
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For k € {0,..., K}, let us define by induction

SO - lnf{] m, T - k Z rlilin}a 5?—4—1 = sup{j < S?a Tj = k7 Zj = Zr]?ﬂin}'

Note that the (s¥ — ¥, |)i>0 are i.i.d. and that, by definition, for any j € {s¥,,...,sF — 1}, one has
a;-“ = s¥. Therefore
sf’fl sffl
D, (or == ) (sf =) < C(sf —slyy).
r=sk r=sk

i+1
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As sk > m while s¥ < m — n, this shows that

n m—1 n—1 S?_l n—1
Dlohiam—(m=0)< Y (of =< D (oF =) <C Y (sf—sh)
i=1 i=m—-n 7=0 r=s’7.“+1 7=0

On the other hand,

i=1 =13 9§’<77L
n n n
< Z(UO’? 75])2(53 753 1) < Z(U k 75?)44» Z(Sj 75] 1)2
=1 7 =1 ' =1
m—1 n—1
< D (o) =)+ Y (s —sh)?
i=sk j=1

The first term in the right-hand side can be treated as above and we obtain:

K n—1 m— Sn
[M]n+<M>n<Cn+C’Z Z:(s;C g+1 Z (55 —s]+15
k=1 \ j=0 3=0
Therefore
K n—1 m— sfz
P[[M]n + (M)n > y] < ZP 2(85 ]+1 3+ j g+1 ° > (KC)_l(y—C'n)
k=1 | j=0 7=0
K n—1
<> P Z s541)* > 2KC) 'y — Cn)
k=1
K — m— sfl 1
Z Z 8 - SJ_H < (2KC) 'y —Cn), 3 - S?_H) 2KC) Y y—Cn)|. (32)
k=1 j=0 =0

Let X = sf — J+1 (for k € {0,...,K}). Then the (X});—o,.n are iid. and X{§ follows a geometric

law of parameter p* := P[Z, = me] which has exponential moments. In particular (X%)? satisfies
Bernstein’s condition: there exists ¢* > 0 such that, for any k € {0,..., K} and p > 2,
\(-k\p—2
E [||X(’)“| —E [|X§|]|p] < %vk where v* := Var(|X5[3).

From Bernstein’s Theorem (Corollary 2.11 in [14]) we have

P [i(sf — sk )P > ]E[X(’)“|3]n+x1 < exp{—“}.

k k
= nok + xck)
This allows to handle the first terms in the right-hand side of . As for the second term, we note that,
in the event {23:01(5;“ —sh.1)? < (2KC)™'(y — Cn)}, we have by Hélder’s inequality:

_ . 1/3
<ot Dby z o (S 0) 5 ey o
i=0 i=0
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Hence

n—1 m— st 1
P |3 (sh st 0) < (2KC) " (y — Cn) | 0 s0,) > (2KC) My — Cn)
=0 =0
[C1n*/3 (y—Cn)/?]+1
<P Z (59 — 39+1)5 > (2KC) ! (y — Cn)
7=0

We can again use Bernstein’s inequality to handle this later term: we have, for some constant ¢® > 0 and
0= Var(IXg]%),

n 2
0 x
P jgo(s —s9.)° >E[|X§° ]n—i—x] SeXp{_Q(nvO—l—xco)}'

So choosing y = Cyn for a sufficiently large constant Cs in , we obtain that

P[[M], + (M) > Con] < 2K exp {_(Z} .

Proof of Theorem[3.]} Coming back to and using Lemma we find
P[|M,| > z] < 2exp{—2?/(Cn)} + exp{_%}~

Recalling that My = 07" (t) — E[07*(¢)] for 7 = Ct, we obtain therefore (for n = 7, = et and € € (0, 1])

e

: : €%t
PO - BIOT 0] > e < Coxp |- |-
Then we use Lemma to get the concentration inequality for . (t). O

3.3 A corrector outside the junction

In this part we build a random sequence (W};);cz which plays the role of a corrector for large values of |i].
We first use (W;);ez in this section to investigate the behavior of U, ;(¢) for large |¢|. The main role of
the (W;);ez will be however in the next section where the property of being a kind of corrector for large
values of |i| will be used in a crucial way.
We recall that e = (ek)kzoy_,,,K is such that Hk(—l/ek) = min, H* (p) This implies in particular that
= VE(e¥/mk) < v* for all k € {0,..., K}, where the o* are defined in (7). We define (W;);cz as follows:
we set W§ = 0 and define W for ¢ < —1 by backward induction by settlng

ng( = W) = v? for i < 0.
For i > 1, define W by forward induction by setting, if £;” = sup{j <1, T = T},

We =0ifi> 1and€w’ <0

and

Vhk,  (Wr - jom1) = ok where T = k, if i >1and <! > 0.

w—l g e’

By the definition of Emax, We have 0 < W, — W < epax if i +1 < 0 while 0 < W = Wi < emax if
¢; = 1. We now collect several properties of the sequence (W;).

Lemma 3.9. We have
[W; — W;| < emax|i — ]

if Ty =T orifi nj<O.
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Proof. If i < —1, then by the definition of W; one has 0 < W;11 — W; < epax. So the claim holds if ¢ < 0
and j < 0. Let us now assume that j > 0 and let us set £ = T}. If Kj_l < 0, then W; = 0 and

(Wi = W] = [Wpa| < —emaxl; ' < emax(j — £ 1),

j j

If éj_l > 0, then by the definition of W; one has |[W; — W,-1| < emax. By induction, this implies that
J

|[W; — Wi| < emax|j — 1] if T; =T and ¢ > 0, j = 0. The claim for ¢ > 0 and j < 0 follows easily. O

Lemma 3.10. There exists C > 0 such that, for any € € (0,1], for any ig,i € Z, one has

P[W. e —e’(i —io)| > e|i —io|] < Cexp{—€’|i—io|/C}  ifi<ig—Ce!

i*lo
and L
P [|W — T (i —ig)| > eli — ¢0|] < Cexpl{—€li —ip|/C}  ifi>ig+ Ce .

7;—10

Proof. Fix first ig = 0. For ¢ < 0, the proof is a straightforward application of Hoeffding’s inequality
([T4, Theorem 2.8]) combined with the property that, by the definition of V°, E [(f/gi)*l(vg)] =él.

Let us now investigate the case i = 0. For ke {1,..., K}, let sk =inf{i > 0, T; = k} and let us define
by induction s¥,; = inf{i > s + 1, T} = k}. Then

i
Wo = Y (V5 )7Hh),
j=0 7

where the (V5 k)*l(vk) are i.i.d. with the same law as (Vzko)*l(vf) given Ty = k, which is bounded by

€

J
emax- Recall that E [(f/zko)_l(vf) | To = k] = e* /7%, So, by Hoeffding’s inequality,

P [|WS@ —ie /¥ > x] < 2exp{—2?/(2iemax)}-
Since we also have by Bernstein’s inequality ([14], Corollary 2.11]):
P[|s¥ — (7%)7ti| > €i] < 2exp{—i/C},

we can infer that, for any i > Ce™! and setting j;, = [7¥i],

P [|WZ - eTii

K
>6i| < D P[|Wi—e¥i| > e, T =k, |i — 5%, | < €i/(2emax)] + P[[i = 5, | > €i/(2emax)]
k=1

K

< P [|Ws§-k — ek mb| > €if2 — |ji/mt — ¢|] + P [lja/7 — 55 | > €i/(2emax) — /7" — ]
k=1 )

< Cexp{—¢?i/C}.

We now address the case ig # 0. We note that ¢ — WT_“; can be built exactly as W;” except that

K3
the origin is 49 and w is shifted by 7;,. Thus we have in the same way

PIWS —e®(i —io)| > €li —io|]] < Cexp{—€’|li—io|/C} VieZ, i<io—Ce
and

’L‘*’LQ

P[\W”o' — T (i — )| >e\i—z'0|] < Cexp{—€2li—io|/C}  VieZ, i>ig+ Cel.
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Fix C large and to be chosen below, ¢ > 0, T > 1 with €I' > C, for C large enough. We define the
event

Ee.r ::{ sup W79 — (i — o) Limiy — €7 (i — ig) Limig| < €T,
[i|<CT, lio|<CoT
Jier)2a)([CT]) = CT/2, Jier)say)([-CT/4]) = —C'T/Q}7 (33)
where J,,(T') and « are defined in Lemma By Lemma Lemma and Lemma we have
P[ES ] < CT? exp{—€*T/C}, (34)

where C' = C(C). We assume that C is so large that
Cp < C/10 and C > 16Ba/In(2), (35)

where 3 is given in the approximate finite speed of propagation (Lemma[2.6)) and Cy is defined in Lemma

B3
Lemma 3.11. If C is large enough we have, for T > Ce™' and in E.r,

lei +vlis — Uei(s)| < 3T Vse[0,27], Vie [2(min ) Lel, CT/21 N Z (36)

and - -
% + v)s — Ue,i(s)| < 3eT Vs e [0,2T], Vie [-CT,—-CT/2)] n Z. (37)
Proof. Let us first note that for i € [2(miny, e¥) 1T, CT] N Z, since we are in E. 1, W; = elii—eT > €T >
0. Then, the maps s — Ue ;(s) and s — W} (s) := W; —€eT +v!s solve () with an initial condition which

satisfies, since we are in E. 7, 0 < W!(0) < U.;(0). So, by the approximate finite speed of propagation

(Lemma we have ’
Wi(s) < Uei(s) + 27" Vs >0, ¥neN, Vie [2(min )T, T, ([CT))] N Z

Choosing n = [C'T/(2a)], we obtain, if C is large enough (depending on 3 only) and since we are in F, r,
elii — 2eT + vlis S WH(s) < Uei(s)+1  V¥se[0,2T], Vie [2(min M) LeT, CT/2] N Z.

Replacing W' by W2(s) := W; + €T + v¥s gives the opposite inequality. Thus holds.
To obtain (37), we note that, for i € [-CT, —CT/2] A Z, the maps s — U, ;(s) and s — W}l (s) :=

7

W; — €T + v2s solve (6)) on the time interval [0, CT/(4|V|)] with an initial condition which satisfies,
since we are in E. 7, W}(0) < U, ;(0). So we have as above

W}(s) < Uei(s) + 27 el Vs e [0,CT/(4|V]w)], Vie {~CT,..., J.([-CT/4])}.
We choose n = [CT/(8)] and get, for C large enough (depending on 3 and |V), since we are in E. r,
Wh(s) < U.i(s) +1 Vs e [0,2T], Vie [-CT,...,—CT/2)] " Z

Arguing as above we get . O

3.4 A superadditive quantity

The aim of this section is to investigate the existence of a limit for 6. (t)/t as t — +c0. For doing so, we
introduce new notation. Fix A > 0 such that

= vk VE(eF /m)
h i = i _ = — HF(—1/e") = —A 38
- kegg}i.,m & T aeliit T d T kel ) = o o
where A is defined in . Let us define

0.(s) = E[0.(s)], Meﬁ(t) = Sei%(l)f,t] 0c(s) — hs.

We note that the quantity ]\7[6 7 is nonpositive, nonincreasing in ¢ and in h. The main result of this
section is the following:
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Theorem 3.12. The limit k_;, of Me,;l(t)/t, as t — +00 exists, is nonpositive and nonincreasing with

respect to h. Let us set

ke:= inf k ;= _lim k_ ;.
O<h<—Aq h——Ay

If ke < 0, then the limit e of 0.(t)/t, as t — +o0, erists almost surely, is deterministic and satisfies
196 < 7A0.
If ke = 0, then the limit iminf, , o, 0.(t)/t is deterministic and is not smaller than —Ay.

To prove the result, we are going to show that Me 7, is almost superadditive (Lemma , which
implies that ]\7[e 7 (t)/t has a limit k_; as t — +00 (Lemma . This, in turn, will show the existence
of a limit for .(¢)/t if k_; < 0 and thus, by the variance estimate, the a.s. limit of 6. (¢)/t (Lemma .

The proof of the superadditivity of ]\7[6 7, is intricate and requires the introduction of several additional
quantities. Let £€“ : R x Z — R be a measurable map which is smooth, uniformly Lipschitz continuous
and increasing in the x variable, with inverse also uniformly Lipschitz continuous, and such that

wr z/e? if x < —min(Ry,e’), wr T x
& (x,1) = { x?(zk if x>0, T, i ko’ ) and & (1) — Elwso - gl{xzo, Tf:k}‘ <L

Since the inverse of £ is uniformly Lipschitz continuous, we have in particular, if x > y
& (w,1) — €2 (y,1) = C7H(a — ). (39)
For 0 < s < T, let

w - M- _ inf w (@ ’77}1
er(s) e*’"“T(S) ieZn[fé'T,lCE'lT/Q],'re[O,s] e Weilm),i) —i=hr

We also set, for any ig € Z n [-CyT, 0],

“rio,w _ Arto,w . . w w . w Tinw . 3 . ~
M) = TR = U2 ),0) — V= ) o —

Note that M:T(O) = 0 and that M7 is nonpositive. We will prove below that M. r and ME,T are good

approximations of ]\Zfe .
Let us introduce the event

E.r=E.rn { sup |0e(s) — Oe(s)| < €T, sup £ < CT/2,  Jior/acan+1([CT/2]) = 0} , (40)

s<2T i<2emiyeT

where E. 1 is defined in . Recalling Lemma Theorem and we have
P [E;T] < OT? exp{—€2T/C. (41)
Lemma 3.13. In EQT and forig € Z n [—CyT, 0], we have, for s € [0,T],
Mgy (s) < M, j(s) + €T, ‘MQ’T(S) - M;?:’F”(s) < CeT,

where C' depends only on the Lipschitz constant of & = &2 (x,4) with respect to x.
Proof. Let 0 < 7 < s < T and choose i = —0¢(7) in the definition of Mg 7.(s). By we know that
i=—0%(1) € Z n [~CT,0]. Then, as we are in E 1, we have
cr(s) <0+ 07(r) — hr < 0,(1) — hr + €T.
Taking the infimum over 7 € [0, s] gives the first inequality. For the second one, let us recall that, since

we are in E r defined in (33), we have for any i € Z n [-CT,CT] and iy € Z n [-CyT, 0]

T-r,LvOu.)

(W™ — €0 —io)Liciy — €7t (i — i0)Lisiy| < €T

l*io
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As x — £¥(x,4) is uniformly Lipschitz continuous with Lipschitz constant C' and T, °* = 7& i, We have
€4 :130 Ji—ig) — (i —io)]
< e (W9 i — ig) — €9(e2(i — o) Limig — €70 * (i — o) Limsg i — i0)| + 1
<Cel' +1
This implies the second inequality. O

We now use in a crucial way the construction of (W;) to obtain the key property of MG,TS
Lemma 3.14. Let ¢, T be such that €T > C and fix C; > 0, w € E. 7, 5€ (0,T] and set ip = —0%(5).
Assume that M %" (3) < 0 and that 4 M5 (5) < 0 for some 5 € (0,T) with |5 — 5| < C €' 2T. Then
there exists i1 such that (8,i1) is a minimum point in the definition of MZ0 +°(8) and there exists large

constants ¢1 and C (depending on Cy but not onw, €, T, 5 or §) with the pmperty that, if § = c1€T, then
we have |UZ (3)| < Ce'/2T, |iy —ig| < Ce'/2T and

Ugi(3) = (i —i0)lici, + € T (z —10)Lizig — Ce'l?T Vie Zn [-CT,CT/2]. (42)
Proof. As %Méf}w (3) < 0 there exists i1 € Z n [-CT, CT/2] such that (3,41) is a minimum point in the

definition of M™% (3).
By the envelope theorem, we have

d i ,w . w ~ w ~ w ~ w ~
0> 7M60T ( ) - a § ( e 11( )57'1) sz}l (Ue,i1+1<s) - Ue,il (8)’ Ue,@‘i*’l (S) - Ue 11( ) Ue 11( )) — h. (43)

ds
On the other hand, by the optimality of i, we have
ge( ez( ) ) ge( ezl( ) ) ge( ZTL%(," ) ge( z:lozoyilin) VlEZﬁ[*C’T,OT/Q] (44)

We first claim that i; > —CT/2. Indeed, since we are in E, 7, inequality (37) in Lemma implies
that, for any i € [-CT, —CT/2] (which implies that i < Cpt < io, UZ;(3) < RO and W, “)w < RO if C
is big enough),
§(U2i(5),1) = €2 (WS i — o) — o — hr = () 71 (€% + v(5) — () 71 ("(i — i) — ip — hs — de(e”) ™' T
> ()70 — h)5 —4e(eX)"IT > 0

since (e%)~'oY > h and § > c1€T where ¢; is large enough. This shows that i; > —CT/2 because
M5(3) < 0.

In the same way, we have i; < 2(ming €*)"'eT. Indeed, for i € [2(miny e*)~1eT, CT/2], by in
Lemma and for k = T}, we have

€8 (UL (3),0) — €W i — o) — g — h > ()™

> ((c)”

Since Meiqu’f” (8) < 0, this shows that i; < 2(miny ¢*)~'€T. Recalling the definition of E, 7, we also have
therefore that ¢;, < CT/2.

We now prove that [UZ(3)| < Ce'/?T. By contradiction, assume first that UZ; (3) > Ce'/?T, where

C is to be chosen below. Then, as |§ — 5| < C1€"/?T we obtain U¢,;,(8) > 0 for C large enough. Since

1o = —0%(5), we get that iy > ig + 1. Using successively that Uy, (5) > 0 (for the first equality), and

the fact that ¢;, < CT/2 and that (¥ — iy = EZIO i, (for the inequality), and the definition of the (W;)
(for the last equality), we have, for k Ty,

0 g ( 67,1(5) 7’1) VZ“’ (U:i1+1( ) U;le(~) U;Z‘l"l( ) U;J'Ll( ) U:zl(N))
= (M) TV e (U24w (3) = U2, (9))

Y(eki 4+ vF3) — (eF) 71k (i — io)) — io — hs — de(eF) 1T
Yk — h)5 — 4e(e®)™1T > 0.

71 )
> (e )AVZ%{“ (W;f’o —WT ) = (eF) "ok > b,
ir=io  ip—ig
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which contradicts ([3). Assume now that UZ; (3) < (=C"€'?T) A (=Rp). Then as before, we have
i1 + 1 < ig if C’ is large enough and we get
0 é-w( :7,1 (§)77’1) VZ:‘; (U:i1+1( ) U:euzl (§)7U;Z‘;’ ( ) Uéuzl( ) U:zl(~))
= (e )71 ngu( :,il+1(§) - U:J“(g))
> (e")” 1V077D (Wo% . — W%y = (%)M > h.

11+1—10 11 —10
11 io

This gives again a contradiction with (43]) and show that |U‘“( 5)| < Ce?T for C large enough.
We now claim that this inequality and the fact that ig = —6“(5) imply that |ig—i1| < Ce'/?T: indeed,
let s be such that U (s) = 0 (if it exists, otherwise, we set s = 0). Then, by Lemma we have

Ui, (3)] = UL, (3) = Uy, (s)] = 0[5 — s,
so that |5 — s| < 67 1C"€Y/2T. 1f iy < 0, by the definition of s, #“(s) = —iy, we get, recalling Lemma
lio — i1| = [6°(s) — 6%(3)] < Cy(|s — 5| + 1) < Cy(|s — 3| + |5 — 5| + 1) < CeY/*T.

If i1 > 0, we get in the same way |ig| < Ce’/2T and so |ig —i1| < C€'/2T. By the choice of C in (35), we
have that ig € [-CT/10,0]. Thus, for € small enough, we obtain also iy € [-CT,CT/2]. Coming back
to we obtain therefore, using the facts that ¢ is uniformly Lipschitz continuous, |Uf (3)| < Ce'/2T
lig —i1| < Ce'/?T and the fact that we are in E.r,

E(UE(8),1) = €W, 0" i —dg) — Ce/*T  Vie Zn[-CT,CT)/2].

10

Since the inverse of ¢ is increasing and uniformly Lipschitz continuous, we get
U2(3) = W[ —Ce*T  Vie Zn [-CT,CT)/2].
Recalling that w € E, 7, we find . O

Next we show that we can bound from below M7 (t) by Meﬁ(t):

Lemma 3.15. Let ¢, T be such that €I’ = C. There exists a constant C such that, in EE,T and for
€ [0,T], we have

MZp(t) = M, ;(t) — Ce'/*T.
Proof. Let
5= sup{s € [0,£], M¥p(s) = M¥p(t) + 4¢/2(2T — s)}.

If there is no such a s € [0,t], then MZ(t) > —8¢'/2T since Mg5(0) = 0. So we have M p(t) = —Ce?T
while Me,ﬁ(t) < 0, which proves the result in this case. In the same way, if § < ¢1€T" (for ¢; to be chosen
below), then, since s — My (s) is Lipschitz continuous and M7 (0) = 0, M¢7(5) = —C5 = —CeyeT
and by the definition of 5 we have M7 (8) = Mg (t) + 4€'2(2T — 5). So Mgp(t) = —Ce?T while
Meﬁ(t) < 0, which proves the result also in this case.

Assume now that 5 exists and satisfies 5 > ¢;€T. We also suppose in a first step that 5+ C’e"/?T < t
with €’ = C/2 where C is given by Lemma Note that M7 (5) = MZp(t) + 4e'/2(2T — 5). Let
igp = —0%(5). Then, recalling Lemma and the definition of 5, we have

M23(5) = M2 p(5) — CeT = MEp(t) + 4€'2(2T — 5) — CeT
> M“’ (54 C'eV?T) — 46 2 (2T — 5 — C'e'/?T) + 4€Y/2(2T — 5) — CeT
= M2 (5+ €/2T) + CeT
> M (5 + €°T).
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So there exists § € [5,5 + €"/2T] such that (d/ds)M, “)Tw(s) < 0. Note that |5 — 5| < Ce'/2T. Let (3,i1)
(where i; € Z n [-CT,CT/2]) be a minimum point in the definition of Mé?ﬁfj(é) From Lemma we
know that [UZ; (3)] < Ce'/2T and iy —ig| < Ce'/?T for a large constant C. Then we have (since we are
in E. 7 and by Lemma |3.13),

MEp(t) = M2p(5) — C'PT = M (3) — Ce'/*T
= E(UE;, (3),in) — € (W25 v — o) — o — h3 — Ce'/*T
> —Ce’T —ig— hs = —Ce'?>T + 6“(5) — hs

> —Ce'’T 4 0.(5) — hs = —Ce'*T + M, (1).

This proves the result.

The case where 5 satisfies 5 > ¢1€T" and 5 + C’e¢'/2T > ¢ can be treated in a similar way, by noticing
in a first step that
M7 (8) > M (t)

and concluding as in the previous case that there exists a minimizer ¢; for M o, %" (3) (for some 5 € [5,1]
and thus such that |§ — 5| < C'te'/?T since 0 < t — 5 < C'¢'/2T) such that |U#(3)] < CeY*T and
lig — i1] < Ce/>T. We can then complete the proof as above. O

In the next step we show that M_; () is almost superadditive.

Lemma 3.16. There is a constant C such that, for any t = C and any h € [0,t],
M, j(t+h) = M, (h)+ M, (t) — C(1 + (In())"/5¢7/). (45)

Proof. Fix 0 < h<t<T:=2t+1 and € > 0 small enough so that t = c¢1€1’, where ¢; is as in Lemma
We also assume that ¢ is large enough so that €¢I" > C. Let consider

t =inf{s € [t,t + h], Meﬁ(s) < Meﬁ(t) —€l/4s)

if there is some s € [t, ¢ + h] such that M_ ;(s) < M, ; (t) — €/*s and set £ = t + h otherwise. If ¥ = + h,
since M, ; (h) < 0, we have

M, (t+h) = M, (t) — /4 (t + h) = M, (h) + M_j(t) — €"/*(t + h).
Our aim is to show that a similar inequality holds if £ < ¢ + h.

Let us first consider the case where t < t+h and t —~T > t, where v = C'e'/* for some large constant
C’ to be chosen below. Then M_;(t) = M_;(t) — /4. In E.r, we have by Lemma (for the first
inequality) and Lemma (for the second one)

MEp(f) < M, ;(8) + €T = M, ;(t) — €4+ €T < M2p(t) + Ce'°T — e'/*1. (46)
Ast —~T € (t,t + h), we have, by the definition of ¢,
Me,ﬁ(f_ ~T) = Me,h(t) — AT —~T),
so that
t —~T) — Ce’T > Z\Zeﬁ(t) — AT —AT) — CeMPT
t) — eV + VAT — CeVPT

(
(
(1) = CePT + YT (by (@)
© (D) + O LT,
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if we choose v = C'e*/* for C’ large enough and independent of ¢ and T. Let us set ig = —6“(f). For €
small enough, the inequality above implies (by Lemma|[3.13) that

MZO 2 (F = yt) > Mg?;’(f).

So there exists £ € [t—~t, {] such that M“” (t) < 0 and (d/dt)]\;[io’w() < 0. Note that |[f—f| < vt = C'e"/*t
and that t>t>=cel. Accordlng to Lemma u there exists i; such that (¢,41) is a minimizer of
M (f), and iy satisfies (U2, ()| < CeV*T, |iy —io| < Ce’/*T and

Ugi(t) = €(i — ig)Lici, + € U (i —i0)Limg, — CeVAT Vie Z n [-CT,CT)/2].

Let us set jo := —0,(f) + [C"eY/*T], where C” is a large constant. Using the definition of & (for the first
line and the last line), (39) (for the second line) and the fact that we are in E. r (for the third line), we
have, if C” is large enough and for any i € Z n [-CT,CT /2],

UZ,(E) =8 (i —ig, i) — Ce'*T — 1
>E9(i — jo,4) + O~ (jo — dg) — CeV/AT
S€9(i — jo,1) + C71(0(F) — B,(]) + C"eVAT — 1) — CEVAT
260(2 —Jo)Li<jo + el (i — Jo)Lisjo-

As the solution starting from e®(i — jo)licj, + €Ti (i — jo)Lisj, is UerU Jo» the approximate finite speed
of propagation then implies for all n > 1

Usi(t+5)=U2" (s)—27"  V¥s=0, VieZn[-CT,J,([CT/2))].

€,2—Jjo

Choosing n = [CT/(16a)] + 1 (with o as in Lemma [2.7), we obtain by the choice of C' in (which
ensures that —nIn(2) + 8T < 0) since we are in E p (where J,([CT/2]) = 0):

Ui(t+s) 2 U () —1= U (s—67")  Vsel[d ', T], Vie Zn[-CT,0],

esi—jo esi—jo
where ¢ is given by Lemma Hence, in E@T, and for s € [67%, h]:
0“(f +5) = 0.°%(s — 1) — jo.
As |t — t] < 4t = C’¢'/4t and by the definition of jo we get, in view of Lemma
0° (L + 5) = 0507 (s) + 0.(1) — CYAT  VWse [0,h].
Recalling the bounds on 6. and on P[E{ 7] in we obtain by taking expectation and for s € [0, h]:

Oc(t+8) = 0.(5) + 0.(8) — CT* — CTPES 1] = 0c(s) + 0c(1) — C(e*T + T® exp{—e*T/C?}).
Thus, using that t — ¢ < 0,

[oi;?f ; 0c(t+s) —h(t+s)= M, ;(h+t—1) +0.(]) — ht — C(eV*T + T? exp{—€>T/C})
s€[0,h+t—1% )

> M, j(h) + M, ;,(8) = C(V*T + T® exp{~€*T/C})
> M, j,(h) + M, (t) - C(eVAT + T3 exp{—€*T/C}),

where the last inequality comes from the fact that M, ;(f) = M, j (t) — €//*¢. On the other hand, picking

w € E. 7 and using successively Lemma inequality |f — #| < C’e'/*t, the definition of  and the fact
that |Ugji1 ()| < Ce/AT and that |i; — ig| < Ce'/*T with ig = —6% (), we obtain

ci(0) = MOp(t) — €T = M (8) — CeT > MO (£) — Ce'/*T
=& :n() 1) — fw( :11010721—10)—10— hi — CeMAT
> —iy — CeT — ht — CeVAT = 6% (1) — hi — CeV*T = 6. (f) — ht — CeY/*T.
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Therefore

M ~ _: fM B inf . . > inf . 7 _
cn(t+h) =inf{M_;(t), se[O,I}ILl-J—t—ﬂe (t+s)—h(t+s)} sE[O,lirzl+t—ﬂ9 (t+s)—h(t+s

So we have obtained the following inequality:
M, (t+h) = M_j(h) + M, (t) — C(e/*T + T% exp{—€*T/C?}). (47)
B In order to handle the case where t < ¢+ h and t — 71" < t, we note that, by the choice of T" we have
t >t >T/3. Then, for € > 0 small enough, we have in F, r:
Mg p(t) < M, j,(t) + CeT' = M, ;,(t) — VAt + CeT
< MS’T( ) — 61/4T/3 + 061/2T < MZp(t).

Thus we can find # € [t, ] such that MéoTw(f) < 0 and (al/dt)Ml0 ¥(f) < 0. Note also that | —| < C"e¥/4T
because t — yT < t. Then we can complete the proof as in the previous case.

We now know that always holds. If we choose € = (3C In(T’) /T)/? (where C is the constant in
and where this choice is possible since then t > Ce~?! for € small), then, as T = 2t + 1, becomes

M, (t+h) = M, j(h) + M, ;(t) — C(1+ (In(t))/37/%).
This holds for any 0 < h < t with ¢t > C for some large constant C. O
The main consequence of the previous lemma is the following:

Lemma 3.17. The limit k,_ j, == lime o0 M, 2 ()/t exists and is nonpositive as t — +o0. Ifk_; <0,

e,h

then E[0.(t)]/t has a limit as t — 400 given by (k, j, + h). Ifk,j, =0, then liminf; ;o w > h.

Proof. As M .5 (t) satisfies the almost superadditivity property ([@5), the limit &, j, := limy—, o0 M, ;,(t)/t
exists. If k_; = 0, then, as, by the definition of M i.(t), we have M B () < 0c(t ) it and we obtain

liminf 0. (¢)/t > h.

t—+00

Let us now assume that k_; < 0. By the definition of ]\Zfeﬁ(t) we know that

>

0.(t
liminf =2 > liminf —%2"~ "~ —k [
t—+0 t—+400 €

To prove the opposite inequality, let € € (0, |k, ;[/2) and T' > 0 be such that |M i(t)/t—k, ;| < efor any

>T. Fix t > T and let us define t = sup{s > t, M_, ( ) =M_;(s)}elt, +oo] Then, for s € [¢,?), we
have, since s = T, /

V)

M, ;,(t) M, ;(s) s M, 7,(s)
. ke,h . —k‘eﬁ=; p —k ;L ;(k‘eﬁ-l—é) k,h'

—e <

So s < t(k,; —€)/(k,; +€) < (1+ Ce)t. In particular, ¢ is finite and satisfies ¢ < ¢(1 + C). Note that,

by the definitions of £ and of M_; (), we have 0, (f) — ht = M, ; (f). Therefore, as . is nonnegative and
nondecreasing,

0.(t)  0.(t 0.(t M_;(t) + ht 5
t( ) < f_> < (14 Ce) tg_) = (1+C’e)’h(3 <+ Ce)k,j +e+h).
So 7
e t 7
®) S (1+Ce)(k,j +e+h),
t—+ow L ’
which proves that 0, (t)/t converges to k. + h since € is arbitrary. O
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As a consequence, we have

Lemma 3.18. Let h < —Ag. Assume that k, 5 < 0, where k_j, is defined in Lemma . Then the
limit O of 0c(t)/t exists a.s. ast — +0 and satisfies ¥ < —Ag.
Ifk ;=0 for any h < —Ao, then liminf;, o 0.(t)/t is deterministic and is not smaller than —Ayg.

Proof. Assume that k_; < 0. Let us first check that, a.s., 0.(t)/t converges to the limit Je of 0.(t)/t =

E[6.(t)]/t given by Lemma and which satisfies . < —Ag. This is a classical consequence of the
variance estimate in Theorem Fix € > 0 and let N € N be such that |0.(n)/n — .| < e for any n € N,
n = N. By the variance estimate, we have

r| - 2| <P

where the right-hand side is summable. So by the Borel-Cantelli Lemma we have, a.s.

¥, — 2¢ < liminf M < lim sup M

0.00) _ 0uln)

n

0.(n)

n

-9,

> e] < 2exp{—€*n/C},

< Ve + 2e.

As € is arbitrary, this implies the a.s. convergence of (6.(n)/n) to Y. The convergence of (0.(t)/t) to
Je as the continuous variable ¢ tends to infinity comes directly from the regularity in time of 8, (Lemma

. The proof in the case k_ ; = 0 goes exactly along the same lines. O
Proof of Theorem[3.13 1t is a straightforward application of the previous lemmas. O

4 Definition of the flux limiter and homogenization

We recall that e = (€")k=o,....i is such that H*(—1/e*) = min, H"(p). The aim of this part is to define
the flux limiter A, building on the construction of ¥, in the previous section. For this we introduce new
notation. Recall that Ag = maxye(o, .} minyer H*(p). Given A € [Ag,0) and k € {0,..., K}, we denote

by pffﬁ (respectively pﬁ’f) the largest (resp. the smallest) solution to H*(p) = A and set

0,— .
_ P T ifrx<0, ke{0,...,K} 4
da(z, k) {pﬁ""'m ifz>0 ke{l,...,K} “8)
and 0 1
B S if y<0, ke{0,...,K}
) = gL k) = (—py ) 'y ify , yee ey 4
Ya(y, k) = o4 (—y, k) {(_ij‘,Jr)—ly ify>0, ke{l,...,K}. 49)

We note for later use that if Ay < Ag, then ¢4, < ¢a, and 14, < 14, in R\{0}.
We define the flux limiter A as _
A-—{ -9, ifk.<0

Ay otherwise

with k. and 9, defined by Theorem Note that if k. < 0, then, by Theorem

A=-9,> HY(=1/eF) = A,.
pemax, (=1/e") = Ao

4.1 The limit of N, and U,

We recall that U, is the solution of (6)) with initial condition U%;(0) = %1;<o + eTi1,50. Let us define,
for ke {l,...,K} and (z,t) € R x [0, +0),

Ne(akt)= 3 Suwmll@+0)— D1 dus n((—w.2]) (50)

i€z, i<0, Ti=k i€z, i>0, Ti=k
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and, for (z,t) € (—o0,0] x [0, +o0),

N¥(x,0,t) Z NE(zt) = > Suw (@, +o0)).

€7, 1<0

We set
no® (z,k,t) = eNZ(x/e, k, t/e)
and
(g 1) = ne<(xz,0,t) if k=0andz <0,
Ve WEU = ek Inwe(a, k,t) ifke{l,...,K}andzeR.

Lemma 4.1. There is a set Qg of full probability such that, for all w € Qq,

{ —x/e? if (x,k) € (—0,0] x {0,..., K},

iy v (2,800 =3 ek i (2 k) € [0, +00) x {1..... K},

e—0
and the limit is locally uniform in x.
Proof. The result is obvious if k = 0 since U, ;(0) = €%. We have, for k€ {1,...,K} and = < 0,
Ne(@k,0) = Y Si((@w40) = > denil(—o0,])

i€Z, i<0, T;=k i€Z, 1>0, T;=k
=t{ieZ, x/® <i<O0, T; =k}

(where §F is the cardinal of a set E). So, by the law of large number, we have, a.s. and locally uniformly
in (—o0,0],
nS¥(x, k,0) = et{i € Z, x/(ee®) <i <0, Tj = k} — —n"z/e°.

This proves the locally uniform convergence for v*(z, k,0) if k € {1,..., K} on (—0,0].
The proof for k € {1,..., K} and x > 0 is similar: since
Ne(@k,0)= Y deil(z,+0) = D) deril(—o0,a])
i€z, 1<0, T;=k i€Z, 1>0, T;=k
= —t{ieZ, 0<i<uzx/ed T; =k},

we have as above that
nS(z,k,0) = —et{i € Z, 0 < i < x/(ee), T; = k} — —nFz /e,
so that v5“(z, k,0) converges a.s. and locally uniformly to —z/e”. O

We now want to study the convergence of ¢ as € — 0. Let us first give a regularity result for v¢. This
result will be proved later in a more general setting (see Lemma [4.8)).

Lemma 4.2. The function V¢ satisfies, for any k € {0, ..., K},
|V;($7k’t) - I/é(yJﬂ,S)‘ < C(|:E - y| + |t - S| + 6)7
for a constant C depending on Ay, (%) and |V only.

Lemma 4.3. Let e be such that H®(—1/e*) = min, H*(p) and assume that k. < 0, where k. is defined
in Theorem . There exists a set Qo of full probability such that, for all w e Qq, V¥ converges locally
uniformly to v. which satisfies

Ve(2,0,t) = ve(z,1,t) = - = ve(z, K, 1) in (—o0,0] x [0, +00)
and is given by

Ve(z,k,t) = min {¢4(z, k) — At , —z/e* —tH"(—1/€")} V(z,k,t) € R x [0, +o0). (51)
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Proof. Let us denote by € the intersection of the set of full probability measure given in Lemma [£.1] and
in Lemma Let Qg be the set of w € ; such that §(t)/t converges to ¥, as t — +c0. By Lemma
we know that P[] = 1. Fix now w € . By Lemma we can consider a locally uniform limit
w, up to a subsequence, of n¥<(-,0,-) in (—o0, 0] x [0, +00). Then, by standard homogenization [19] (see
Subsection in Appendix), w solves

dyw + H(0,w) = 0 in (—o0,0) x (0, +0)
{ w(z,0) = —x/e® in (—n,0]. (52)
Moreover, by the definition of 6., we have n“>¢(0,0,t) = €% (t/e). Therefore
w(0,t) =Jt ¥t =0. (53)
The solution to - is unique and given by
w(z,t) == min{—=z/e’ — H°(~1/e")t , p% a — At} in (—,0) x (0, +o0), (54)

~—

since A > H%(—1/e°) and H° is convex (see Lemma [A.2). Therefore the whole sequence n:¢(-,0, -
converges to w locally uniformly on (—o0,0] x [0, +0) as € — 0 for any w € Qy. We set n.(z,0,t)
Ve(x,0,t) 1= w(x,t).

Let us now fix w € Qp, y < 0 and set i. = [y/(e)]. Our next step is to show that, if ¢t < y/(e?A),
then
u(y,t) := lim €Uy, (t/e) = min{y — HO(=1/e")e’t , (=p )~ (y/e’ — AD)}. (55)

Indeed, as the map t — eUg’; (t/e) is uniformly Lipschitz continuous with eUg; (0) — y as € — 0, we can
find a subsequence which converges to some map ¢ — u(y,t). Assume that Uy, (t/e) < —Rg for any e
small enough. Then for any i € Z with ¢ < 0, one has thanks to Lemma [2.1

Ugi (t/e) < UZi(t/e) if and only if 12 .

Therefore
N:(Uzie (t/e)a 0, t/G) = —l.

Multiplying by € and letting € — 0, we find
w(u(y,t),t) = —y/e’
and thus, by ,
uly, t) = w™ (—y/e, t) = minfy — HO(=1/e)e’t , (—=p37) 7 (y/e” — Ab)}.

This holds if U¥; (t/e) < —Ry for any e small enough, which is ensured by the condition ¢ < y/(e’A)
and e small enough thanks to the equality above. Our proof of is then complete since the limit is
independent of the subsequence.

We now turn to the proof of the convergence of n¥¢(-, k,-) in (—o0,0] x [0, +0). Fix w e Qp, z < 0

and ¢t > 0. The map y — min{y— H°(—1/e%)e% , (—pi’f)*l(y/eo—flt) being increasing in (—oo,t/(e’ A))

and being equal to 0 for y = t/(e®A), there exists y with ¢ < y/(e?A) and such that
u(y,t) = .

We set i = [y/(e"€)]. Assume also that n%€(-, k,-) converges up to a subsequence to n(:, k,-). By the
same argument as above, we have

Ne(Ug; (t/e) k,t/e) = #{i € {ic,...,0}, T; = k}.
We multiply by € and let ¢ — 0. Recalling Lemma and the previous step, we get

ne(u(y,t), k,t) = —m*y/e® = nhw(u(y,t),t).
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By definition of y, this shows that n.(z, k,t) = 7*w(z,t) = 7%n.(z,0,t) as well as the equality v, (z, k,t) =
Ve(x,0,t) for any z < 0 and ¢ = 0. By continuity of v, (-, k,-) (this is a direct consequence of Lemma,
we also get the result for = = 0.

Next we turn to the limits for x > 0. Let w € Qp and v.(-, k,-) be a locally uniform limit, up to a
subsequence, of v*¢(- k,-) for k € {1,..., K}, which exists by Lemma By the previous arguments,
we know that for z > 0

Ve, k,0) = —z /e, ve(0,k,t) = —At. (56)

On the other hand, on each branch Ry the dynamical system corresponds (up to relabelling) to the

standard ODE 4
SUs = VE Ugsa(t) - Uy (1))

(where the sequence (Zj);ez, 1,=k is defined for indices j such that T; = k). By homogenization (See
Subsection in Appendix) n* solves

omP + H*(0,nF) =0 in (0, +0) x (0, +0),
where H*(p) = pV*(—1/p) for any p < 0 and H*(p) = 0 if p > 0. Hence /¥ solves

ok + H*(0,vF) =0 in (0, +0) x (0, +0),
where H* is given by H*(p) = (7*)"*H*(n*p) = pV*(—1/(n*p)). Complemented with this system
has a unique solution given by

Ve(x, k,t) = min {fx/ek — H*(-1/eM)t p%+z - At} .

As before this shows that the whole sequence v*¢(-, k, -) converges to v/* given above. O
In the case k. = 0, we have the following result.

Lemma 4.4. Assume that e = (e*) is such that H*(—1/e¥) = min, H*(p) for any k € {0,..., K} and

assume that k. = 0. Then there exists a set Qg of full probability such that, for all w e Qq, V¥ converges
to v. which satisfies

Ve(2,0,t) = ve(x,1,t) = -+ = ve(z, K, 1) in (—o0,0] x [0, +0o0)
and is given by
Ve(x,k,t) = min {@a, (z, k) — Aot , —z/e* —tH*(~1/e")} V(z, k,t) e R x [0,40),  (57)
where Ay is given by ,

Proof. Note that with our choice of e we have Ay = maxyeqo,...xy H*(—1/€¥). Let 0.(t) = E[0.(t)] and
0<(t) = €f.(t/e). Then, using Lemma |3.3] 0 converges, up to a subsequence, to a Lipschitz continuous
map t — U.(t). From now on we argue along this subsequence and note that it does not depend on w.
According to Lemma we have J,(t) = —Agt. We also note that, by Theorem €6, (t/e) converges
a.s. locally uniformly to J.(t). Let Qf be the set of w € Q such that this limit holds (note that this set
depends on the subsequence, we will come back to this point at the very end of the proof). Without loss
of generality, we also assume that, for any w € €,
lim (—s)"{i € Z n (5,0], T® = k} = =",

s§——00
Recall that

NE(O, ki) = ${i € Z, i <0, TF = k, U(t) > 0} = #{i € Z n (—62(1),0], T = k).

7

Therefore
n¢(0,k,t) = ef{i € Z n (=62 (t/e),0], T} = k}.

7
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If w e Q, then we get B
lim n® (0, k, t) = 9. (t)7".

e—0

because €6 (t/e) converges to the deterministic limit J.(¢). So arguing as above, for any w € ), we can
find a subsequence (subsequence of the previous subsequence and depending this time on w) such that
v¥¢ converges locally uniformly to a continuous solution v, of

Ove + H(0ve) =0 in R (0, +0)
Ve(z,k,0) = —x/ek inR (58)

Ve (0,k,t) = U.(t) Vke{0,...,K}, t = 0.
Let 7, be the solution of the junction problem without flux limiter:
O + H(0u%e) =0 in R x(0, +00)

Do(z,k,0) = —x/e* inR (59)
Oi0e + max{Ag, HO (doie), HV(017), ..., HS(0x.)) =0  atx = 0.

The solution is given by (see Lemma
U (2, k,t) = min {@a, (x, k) — Aot , —z/e* —tH"(—1/e")}. (60)

We know from [36, Theorem 2.7] that v, is a subsolution to (59), as it is continuous and satisfies the
Hamilton-Jacobi equation in (R\{0}) x {0,..., K} x (0,+00). Therefore v, < ¥ by comparison [36]. In
addition, we get by the definition of Ay and since ¥.(t) = —Apt:

— Aot < Uo(t) = (0, k,t) < 7(0,k, 1) = — Aot

This shows that v.(0,k,t) = 9.(t) = —Aot for any k.

So we have proved that the whole sequence 6, (t)/t converges as t — -+ to —Agt. This shows, exactly
as in the proof of Lemma that 0% (¢)/t converges a.s. to —Apt as t — +00. We can then proceed as in
the case k. < 0 and find a set Qg of full probability such that v¥»¢ converges for any w € €, to the unique
solution of with 9,(t) = —Agt, which is nothing but .. This completes the proof of the lemma. [

For later use it will be convenient to rewrite the previous lemma in term of the behavior of the U..
Let us define, for k€ {1,...,K} and z € R

o]k = [alf = supli € Z, i <a, Ty k).
We note that, a.s.,

lim e[z/e]x =z

e—0

and that this convergence holds locally uniformly in x.
By the definition of N., we have, for any y < 0 and ¢ > 0,

Ne(Ue,[y]k(t)a k,t) = ﬁ{] <0, 7= k, Ue,j(t) > UE,[y]k(t)} = lj{] <0, T;= k, j > [y]k}
since the order is preserved in time among vehicle with a same type (Lemma . Therefore
VE(eUe,fy/el (t/€), b, t) = e(m*) 71 {5 <0, Tj =k, 5 > [y/eli}

from which we derive that any uniform limit y(-) (up to subsequences) of ¢ — €U, [, /e, (t/€) satisfies

Ve(y(t)a k7t) =Y.
We know by Lemma [£.3] (when k. < 0) or Lemma (when k. = 0), that

Ve(w,k,t) = min{¢z(z, k) — At , —z/ek — tHk(fl/(ek))}, V(z,k)eR
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where A = —9, if k. < 0 and A = Ay otherwise. This shows that

N min {1 5(y — At,0) , OtHO(—1/e%)} ify < At
y(t) = min {9 1 (y — At, k) , ye —ektHk (—1/eM)} if y = At.

Since this limit is independent of the choice of the subsequence, we have proved the following (the case
y = 0 being treated in the same way):

Corollary 4.5. Let e be such that H*(—1/e*) = min, H*(p). For k€ {0,...,K}, let

UZ(y, k? t) = €Ue,[y/e]k (t/G)

Then u¢ converges a.s. and locally uniformly to

_ min{¢5(y — At,0) , OtHO(—1/e%)} if y < At
ue(y, k) '_{ mln{wﬁ (y — At k), ye —ektHk( 1/e")} ify > At. (61)

4.2 Comparison principle

An important point in the proof of the homogenization is to explain how the comparison for the solutions
U pass to the limit. This is the aim of the following lemma:

Lemma 4.6. We fix a solution U of

SU) = VaUiss () = Ui, U () = Vi), U0) e

and set u(w,k,t) = €Ul e, (t/€). Let e be such that H*(—1/e*) = min, H*(p). There exists a constant
C > 1 and a set Qo of full probability independent of U such that, if w € Qo, if uy is any half relazed
lower limit of u“c as e — 0% (possibly up to a subsequence) and if there exists v > 0, a time to = 0 and
a,be R with b > —tg, such that

u‘;’(x,k,to)Zue(x+a,k,t0+b) V(l‘,]ﬂ)e[—’}@’}/] X{l,...,K} (62)

and such that the minimum of (x,k) — u(x, k,to) — ue(x + a, k,to + b) is not reached on {—v,~v} x
{1,..., K}, then

ul (x, kyto + 8) = ue(r + a,k,to+b+s) V(z,k,8) € [—7/2,7/2] x {1,...,K} x [0,C71~].

In the same way, if u* is any half relazed upper limit of some UY (possibly up to a subsequence) and if

there exists v > 0, tg = 0 and a,b e R with b > —ty, such that
u*(x, k,to) < ue(x + a, k,to + b) Vo e [—v,7] x{1,..., K}

and such that the mazimum of (x,k) — u$(z,k,to) — ue(x + a,k,to + b) is not reached on {—v,~v} x
{1,..., K}, then

u(z, ko + 8) S ue(z 4+ a,k,to + b+ s) V(x, k,t) e [—v/2,7/2] x {1,...,K} x [0,C71~].

Proof. We only prove the first statement, the proof for the second one being symmetric. Let Qg be
the set of w such that u¥" converges to u. locally uniformly, such that (eJ[,Y/(gae)]( 14)) converges to
v —avy/(3a) = 27/3 as € — 0 (see Lemma [2.7) and for which the conclusions of Lemma [4.7] (below) hold.

Since u¥>¢ converges locally uniformly to u., for any n € (0,1) small and M > 1 large (to be chosen
below), there exists ep > 0 such that the set

E, = {w €Q, SEBIP : g™ — el Lo (= M, MY x {1, Ky x [0,M]) < 77}
ee(U,e0
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has a probability larger than 1 —n. Let us set E,(w) := {n € Z, t,w € E,}. Let n. := [a/e]. By Lemma
below, there exists mc, > —n. with m. , € E,(w) and

|m€,n + nel < 01(0%77) + C277|n6" (63)

We will use below that en. — a as € — 0 and therefore that em, , converges to —a as ¢ — 0 and then
n — 0.
By (62), the fact that u% is the half relaxed lower limit of u** and by the definition of m.,, there

€Tme W

exists (Tey, key) € (—7,7) x{1,..., K}, minimum point of u“¥(-,, o) — ue (+a,-,to+b) such that

Tme

U (Te s kesto) — Ue " (Teq + @, ke, to + b) — min
as € and 7 tend to 0, where

in = i 9 te) — el + a, -ty + b)) = 0.
min (w)k)e[_;r(%ri{ow”K}(u*( 0) — ue(- +a,-,to + b))

By minimality of (ze ., k), we have

u;—méyﬁw’é(w + a, k’ to + b) — Uzme’nw’e(xem + a, ke,777 b)
< u (@, ko) — u (@, ke, to) for (z, k) € [—y,7] x {1,..., K}.

As —eme < ene < a and uf is nondecreasing in the first variable, we obtain also

Time,nWs€ w
e (

T — €Mey, k,to +0) — " ’E(we,n + a, ke n,b)
< uw’é(xa k7t0) - uw’e(xﬂnv ke,mto) for ($7 k) € [7’-}/77] X {17 s 7K}

For i € [—e 19,67 19] n Z, we have, if we set k = T¥ = TZT_mm::) and z = ei, that ¢ = [2/€]{ and
R e mem];m’“w with « € [—7,v]. Therefore we can rewrite the inequality above in terms of

U, and U to get

U (et + b)) — rey < U (e ) fori e [—e Ly, e ty] N Z.

e,i—Me n i

where 7, = € (U™ (e + @, ey, ) — U (e ke, t0)). Let us note for later use that, as € — 0,

€re,y converges to —min < 0. By Lemma and using the fact that ¢y + b > 0 we obtain, from e small
enough,
U (e Ytg +b) — Cren)s) < UL(e M) forie [—e Ly, e 1y] N Z.

e,i—Me n

As (U750 (e Y to +b) — C(rey)+ + ) and U¥ (et + -)) solve equation (B) and can be compared at

e,i—Me y
time 0 for i € [—e 1y, e 1y — 1] n Z, we obtain by approximate finite speed of propagation (Lemma [2.6])
that for any n € N,

U (e Yto + b) — Cren)s +5) SUL(e g+ 5) + C27" fori € [—e 1y, Ju(e )] nZ, s = 0.

e, i—Me n

Coming back to the scaled problem and choosing n = [y/(3ae)] (where « is defined in Lemma and
for s < vIn(2)/(3afe), so that —In(2)n + Bs < 0, this implies that

Trme,pWs€

Ue (x —emep, k,b+tog— Ce(re )4 +1) <u”(x,k,to+ 1) + Ce
for (Ia ka t) € [773 6‘][’\//(3(16)] (6717)] X {13 vy K} x [Ov ’7/(3045)]
By the choice of w, (€J[y/zae))(€71)) converges to 2v/3 as € — 0. So, for € small enough, we find
N (& = eme kb A to — Ce(Te )y +1) <u(x, kot +t) + Ce
for (x,k,t) € [—v,7/2] x {1,..., K} x [0,C~'~].
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So we obtain, from the definition of E, and for M large (depending on a and « only) and for € and 7
small:

Ue(T—€Me by btto—Ce(Te ) 4 +t) < u”(, k, to+t)+n+Ce for (z,k,t) € [—y,7/2]x{1,..., K} x[0,C'~].

Recall that em, converges to —a while Ce(r. )4+ tends to 0 as € and 7 tend to 0: we can let € — 0
(taking the half relaxed limit in the right-hand side) and then  — 0 to find:

Ue( 4 a, kyto + b +t) <u¥(z,k,to +t) for (x,k,t) € [—,7/2] x {1,..., K} x [0,C74].
This proves our claim. O

Lemma 4.7. Let E € F be such that P[E] > 1 — € where € € (0,1/16). Let E(w) = {n € Z, t,w € E}.
There is a set Qq of full probability such that, for any w € Qq, there exists Ci(w, €) and Co universal such
that, for any n € Z, one can find m* € E(w) with |n —m*| < C1(w, €) + Cz¢|n|, m* =n and m~ < n.

Proof. By the ergodic theorem, we have

liT®(2r + 1) M(Bw)n([-rr]nZ)=P[E]>1—¢ a.s..
(where §(A) is the cardinal of A). Let Qg be the set of full probability for which this holds. Fix w € €
and let R = R(w, ¢) be such that

2r+ 1) M(BEw)n ([-r,r]nZ)=1-2  ¥r = R(w,e). (64)

Fix n € Z. For simplicity we assume that n > 0 and we look for m*. The other case can be treated in
a symmetric way. Let us choose 7 = 11 + R + [n(1 + 8¢)] and assume that [n,7r] n E(w) = @. Then by
we have r —n < 2¢(2r + 1), which implies that (as € < 1/16)

104+ R+ 8en <r—n <222+ 2R+ 2n(1 + 8¢)) < 44/16 + R/4 + 6en.
This is impossible and therefore there exists m* € E(w) n [n,r]. Then m™ € E(w), m* > n and
mt —n<r—n<n+ Ci(w,e) + Caen where C;(w,€) = 12 4+ R(w, €) while Cy = 8. O
4.3 Proof of the homogenization

From now on we fix Qg such that P[{y] = 1 and such that, for any w € €, for e = (e¥) such that
H¥(—1/€*) = min H*, v¢ converges locally uniformly to the map v, given in Lemma or Lemma
Moreover, we assume that, if w € Qg the conclusions of Lemma [£.6] and of Lemma [A-3] holds.

Let (Uf,) be a deterministic family of initial conditions satisfying the compatibility condition @D and
assume, up to relabel the indices, that Uf, < 0 if and only if i < 0. Let (U) be the solution to

an( ) = Vz, (Ui (1) = U (1), Ui, (1) = U7 (1), Ui (1)) i€Z

with initial condition Uf(0) = Uy, i € Z.
We set, for k€ {1,...,K} and (z,t) e R x [0, +00),

N®(x,k,t) = Z 5U;v(t)((177+00)) - Z 5U;d(t)((—00717]) (65)

€7, 1<0, T =k 1€Z, >0, TP =k

and, for (z,t) € (—o0,0] x [0, +o0),
K
(2,0,¢) Z (x, k,t).

We set n®¢(x, k,t) = eN“(z/e, k,t/e) and

sk ) = n*(z,0,t) ifk=0andz <0
v = wklnwe(xkt) if ke{l,...,K}and z € R.

Let us first check that v¢ is well defined.
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Lemma 4.8. Let (Uf,) and U be as above. Then, for anyt > 0,

lim US(t) = +o0. (66)

i—tom
Hence v is well-defined and satisfies, for any k € {0,..., K},
v (a, kyt) = v (y, b, 8)| < O(lz —y[ + [t = [ +¢),
for a constant C depending on Apin, ™ and |V, only.

Proof. The compatibility condition (@ implies that holds for ¢ = 0. Then it holds for any ¢ since V'
is bounded. Fix k€ {1,..., K} and let z,y € R with < y. We have

1 ifz/e < UP(t/e) < yle,

|6U£"(t/e)((y/€7 +OO)) - 6U;“(t/e)<(x/€v +OO))‘ = { 0 otherwise.

By Lemma [2.1] there are at most [(y — z)/(éAmin)] + 1 vehicles of the same type in (z/e,y/e]. Arguing
in the same way for the difference

‘5Ui“(t)((_ooay]) - 5U;f(t)((_oo,$])} )
we infer that
[ve(x, k,t) — v (y, k, )] < 2(7%) Y|z — y|/Amin + €).
Fix now 0 < s < t. We have

1 if UP(s/e) < z/e < UP(t/e),

o iol(fe 40 = Suecol(afes +ee)] = { bl

Let 49 € Z be the smallest index such that U (s/e) < x/e < Uf (t/e) and T;, = k and i; be the largest
one. Then
Ui(s/e) < xfe < Ui (t/e) <Up(s/e) + |V]wo(t — s)/e

Still by Lemma [2.1] we must have i; — ig < [|V]|oo(t — 5)/(eAmin)] + 1, so that
(2, by t) = v (2, b, 8)] < 2(a%) TV oo (t = 8)/(Armin) + €)-
The Lipschitz continuity of v¢(-,0,-) = Zszl 7k ve (-, k,-) is then immediate. O

We assume that v*€(-, -,0) — vg locally uniformly, where 1 is deterministic. Note that v is Lipschitz
continuous and satisfies vy(z,0) = vo(x,1) = -+ = vo(z, k) for z < 0. We fix w € Qg and let v* be any
uniform limit of v*>¢. We already know (cf. Subsection in Appendix) that v* satisfies

o+ H(0,v) =0 in R x(0,T)
v(z,k,0) = vo(z, k) in R.

Our aim is to show that v* also satisfies
ow + max{A, H* " (dyv), H"~(01v),..., H*~(0xv))} = 0 at = 0.
We first show that v* is continuous in 0 (and does not depend on k for z < 0).

Lemma 4.9. Let v* be any uniform limit (up to subsequences) of v*>¢. Then, for allt =0 and x <0

v (x,0,t) =v¥(z,1,t) = - = v¥(z, K, t).
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Proof. Let z < 0 and 4§, if € N be the indices such that U_;s(0) < z/e < U_js4+1(0) and U_;: (t/e) <
w/e < U_je 41 (t/e). We assume in a first step that v“(x,0,t) — v¥(2,0,0) = 2¢ > 0. Then, for ¢ small
enough, v*¢(x,0,t) — v*(x,0,0) = ¢. As, by assumption, Ufy < 0if and only if 7 < 0, this implies that

Z Sue (1/e)((z/€, +0)) Z due(0)((z/€, +0)) = c/e.

<0 1<0
Since by Lemma the cars remains ordered before 0, we deduce that i§ —i§ > c¢/e. Moreover, since

U_ic41(0) = /e S U_je11(0) — U_ic (0) < Amin(i§ — i + 1), we get that if — if < HV”"O L+ 1. We then

Amin

have that e(i§ — 4§) is bounded and converges, up to a subsequence, to a constant z. Remarkmg that
v (x,0,t) — v (x,0,0) = e(i] —if) — v¥(z,0,t) — v¥(2,0,0),
we deduce that z = v“(z,0,t) — v“(z,0,0). Hence, for every k € {1,..., K}, by the law of large number,
v (x, ky ) — v (2, k, 0) = () " Let{i € {—€iS /e, ..., —€iffe} s.t. TY = k} — (mp) Pz = 2.

Since v¥“(x, k,0) = v*(x,0,0), this implies that v*(z, k,t) = v*¥(z,0,t).
Assume now that v*(z,0,t) — v¥(z,0,0) = 0. Then

0 <n(z, k, t) —n(z, k,0) < v°(z,0,t) — v*%(z,0,0).

Sending € — 0, we deduce that v*(x,k,t) — v*(x,k,0) = (m) "1 (n“(z,k,t) — n*(z,k,0)) = 0 and so
v (x,k,t) = v¥(x, k,0) = v*(2,0,0) = v¥(x,0,1). O

It will be convenient to consider also the limit of u““(y, k,t) := eUpy /e]k(t/e) along the same subse-

quence as for v*¢ for k€ {1,..., K}. Let u** and u% be the half-relaxed limits of u“¢ (along that same
subsequence). As z — v¥(x, k,t) is nonincreasing, it has an inverse

a?(y, k,t) == inf{z e R, v*(z,k,t) < —y} (with a“(y, k,t) = +o0 if there is no such a x)
=sup{z € R, v*(z,k,t) > —y}
Note that @* is usc, while its lower semicontinuous envelope is given by
g (y, k,t) == inf{r e R, v¥(z,k,t) < —y} =sup{zr e R, v“(z,k,t) > —y}.

Lemma 4.10. We have
u* < a¥ anduf = al.

Note that, at each point where 4% is continuous, we have u“* = @

Proof. We only do the proof of the first inequality, the proof of the other one being similar. Fix (y, k, t)
with k € {1,..., K} and let (y.,t.) — (y,t) be such that u**(y., k,t.) = u“*(y, k,t). Let i. := [y/e]k.
By the definition of N and the fact that the U; with T; = K remain ordered (see Lemma, we have

N¥(U (t/e). k. tofe) = N(UZ(0), k, 0) = { ﬁ_{g{j g{o —Zli % Z?i i z <0
Hence
w,e w _ - ﬁ{]e{[ye/e] 7""_1}’ T} =k;} if [ye/e]w <0
14 (GUie(te/E)akﬂfs) - G(Wk) ! { —ﬁ{j c {0, . k , [y6/€]k}’ Tj _ k‘} if [ye/e]% 0.’

where eU“’(t Je) = Uy e k( /€) = uc(ye, k, te) — u*(y, k,t) while eie — y. So, by uniform conver-
gence of ¢ we obtain v*(u“*(y,t), k,t) = —y. This shows that a“(y,t) = u“*(y,t). O

Lemma 4.11 (Supersolution at the junction). Let & : [0,T] — R be a smooth test function and A > A
be such that (z,k,t) — v¥(x, k,t) — £(t) — da(z, k) has a local minimum on R x (0,4+00) at (0,t9). Then

g (to)+A=0
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Proof. As (z,k,t) — v¥(z,k,t)—&(t)—da(x, k) has alocal minimum in R x (0, +o0) at (0,%) and ¢ 5 < ¢4

on R with an equality at 0, modifying ¢ if necessary, the map (z, k,t) — v¥(x, k,t) — &(t) — ¢ 5(x, k) has
a strict local minimum R x (0,400) at (0,tp): assuming that £(¢o) = 0, there exists v > 0 such that, for
any (x,k,t) € R x (to —7,to + ) with (x,t) # (0,t9) and |z| < 7,

Vw(x’kat) - f(t) - QSA(J:) k) > Vw(o,to), (67)

with an equality at (0,t0). As v*(z, k,to) = v*(z,0,t) for z < 0, inequality (67) actually holds for any

(Zl?,k,t) € (7777) X {177K} X (to 777t0 +,7) with ( €L, ) (0 to)
Let yo = —v*(0,t). By (67), we have that v*(z, k,tg) > —yo for = € (—7,0), so that

s (yo, k, to) = inf{zx e R, v*(z,k,t0) < —yo} = 0.

By continuity of v*, there exists ' € (0,7) such that, if (y,k,¢) € (yo — 7,90 +7') x {1,..., K} x (tog —
7/7t0 + 7/>7 then
ﬂ:(ya kat) = mf{x € (*’Ya +Oo)ﬂ Vw(x; k,t) < 7y}'

Therefore

s (y, k,t) = min{y , inf{z € (—v,7), v*(z,k,t) < —y} }
> min{y , inf{z € (—v,7), @) + dx(x, k) —yo < —y} }
> min{y , inf{z € R, §(t) + @a(v.k) —yo < —y} } = minfy, va(y —yo + &)k}

If (y,k,t) = (yo, k,to), then ¥ 5 (yo — yo + &(t0), k) = ¥ 5 (0,k) = 0 < ~, so that, reducing ' if necessary,
we get

ay(y, k. t) =i (y —yo +&(t), k) Y(y,k,t) € (o — 7' yo +7') x {1,..., K} x (to — 7', to +7), (68)

In addition, as the inequality in is strict, we have a strict inequality in the above inequality unless
(y, kvt) = (yov katO)' By we have

( k t) . min ¢A(ZI/ - Ata k) ) yeO - eOtHo(_l/eo)} if y At
YLD min {y 4y — At k), yek — eFtHF(~1/eF)} if y > At.

Let us fix T > 0 and set yr := AT. The equality above can be rewritten as

ue(y + At —to) + yr, k,t —to +T)

{ min gqu(y, k), (y+ At —to) + yr)e® —e®(t —to + T)H(—1/e")} if y <0
min {¢5(y, k) , (y+ A(t —to) + yr)eF —e*(t — to + T)H*(—1/e*)} ify>0.

By (68)), this implies that, for any (y,k,t) € (yo — 7 yo +7) x {1,..., K} x (to — ', to +7'),
ay (y, ko t) = Vi (y —yo + E(E), k) = ue(y — yo + £(t) + A(t — to) + yr. k,t —to + T).

with a strict inequality if (y, k,t) # (yo, k, to)-
We apply Lemma with initial time tg — 7, where 7 > 0 is so small that the minimum of the map

(y’ k) - u:(yakato - T) - Ue(y — Yo + f(to - T) - AT +yr, k7 —T + T)

is not reached at y € {—v,~}: this is possible since this minimum point converges to (yo,0) as 7 — 0+.
Then by Lemma we get, if s > 0 and |y — yo| are small enough (depending on +' only)

u(y kto—T+8) = uc(y —yo+&(to—7) — AT+ yr b, —7 + T + 5).

For y = yp and s = 7, we get

0 = uf (yo, k, to) = ue(é(to — 7) — AT + yr, K, T)
_ { mln{wA(f(t 7)— At +yr — AT,k) , e (f(to—T)—f}T—kyT—THO(— /eo))} iff(t0—7)</17'
mln{1/) (E(to —7) — AT +yr — AT, k), (§(t0—7')—AT+yT—THk(—1/ek))} if £(to — 1) = At
- { min {z/JA(f(to —7)— A1, k), 2(&(to — 7) —2}7')} if E(tp—7) < /:1
= mm{d)A(g(tofT) AT k), ek(g(tofr)fAr)} if £(tg —7) = At
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because yp = AT > T maxy H*(—1/e¥). Assume now that ¢'(f) < —A. Then, since £(tg) = 0 and
§'(to) < —A, one has {(to — 7) — A7 > 0 and thus the right-hand side in the inequality above is positive.
This leads to a contradiction and shows that &'(¢9) > —A > —A. O

Lemma 4.12 (Subsolution at the junction). Assume that A > Ay and let Ag < A< Aand¢:[0,T] - R
be a smooth test function be such that (x,k,t) — v¥(z,k,t) — &£(t) — dalx, k) has a local mazimum on
R x (0,400) at (0,t). Then
& (to) + A<0

Proof. We argue as in the supersolution case. As (z,k,t) — v¥(z,k,t) — £(t) — da(x, k) has a local
maximum on R x (0,+00) at (0,%p) and ¢z > ¢4 on R with an equality at 0, modifying £ if necessary,
the map (x,k,t) — v¥(z,k,t) — £(t) — ¢ z(x, k) has a strict local maximum at (0,%¢p): assuming that
&(tg) = 0, there exists v > 0 such that, for any (z,k,t) € R x (tg — 7v,to + ) with (z,t) # (0,%p) and
|z <7,

v (x, k,t) — E(t) — () < v¥(0,10), (69)
with an equality at (0,%0). As v¥(x,k,t) = v*(z,0,t) for z < 0, inequality also holds for any
(2, k,t) € (—7 ) x {1,..., K} x (to — v, to + ) with (z,t) # (0,t0).

Let yo = —v*(0,tg). By (69), we have that v*(x,k,to) < —yo for z € (0,7), so that

u* (yo, k,to) = sup{z € R, v*(z,k,t9) = —yo} = 0.

By continuity of v*, there exists v € (0,7) such that, if (y,k,¢) € (yo — 7,90 + ') x {1,..., K} x (to —
7/7t0 + 7/)7 then
aw(yak7t) = sup{x € (—OO,’)/), Vw(xakvt) = _y}

Therefore

@ (y, k,t) < max{—y , sup{(—v,7), v*(z,k,t) = —y} }

max{—y , sup{z € (=7,7), () + da(z. k) —yo = —y} }

max{—y , sup{z € R, §(t) + ¢a(z,k) —yo > —y} } = max{—y, v1(y—yo +&(t).k)}.
If (y,k,t) = (yo, k. to), then 15 (yo — yo + &(to), k) = 14 (0,k) = 0 > —v, so that, reducing ¢’ if necessary,
we get

aw<y7k,t) <Yz (y — Yo +€(t)7k) V<y7k7t) € (yO _7/a90 ""’7/) X {17 .- "K} x (tO - 7l’t0 +'7/)' (70)

In addition, as incquality in @ is strict, we have a strict inequality in the above inequality unless
(y,k,t) = (yo,k to). By (61) we have

( k t) e min wA(y - Ata k) ) yeO - eOtHO(_l/eo)} lf y At
YU min{y 4y — At k), yek — eFtHN(—1/eF)} if y > At.

NN N

Let us fix T > 0 and set yp := AT. Note that uc(yr, k, T) = ¢ z(yr — AT, k) < yreF — e*TH*(—1/e")
because A > maxe(o,... Kk} H¥(—1/€*). So, reducing +/ if necessary, the equality above can be rewritten
as

ue(y + At +yr, t+T) = a(y, k) V(y,k,t)e (= 7)) x{1,...,K} x (—/,7). (71)
By (70), this implies that, for any (y,k,t) € (yo — 7,90 + ') x {1,..., K} x (toc =+, to + '),
Wy, ke, t) S Yz (Y —yo +E(8), k) = ue(y —yo + £() + At — to) + yr, k,t —to + T).

By Lemma applied at time tg — 7, we get, if s = 0 and |y — yo| are small enough (depending on +/
only) B
u?(y, k,to — 74+ 8) Suely—yo+&(to —7) — AT +y1, b, —7 + T + 3).

For y = yp and s = 7, we get

0 = u”(yo, kr,to) < uc(&(to — 7) — AT + yr, k-, T)
=5(E(to —7) — AT+ yr — AT, k;) = ¢ 5(E(to — 7) — AT, k7 ),
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where the second equality holds because of (7). Then, if &'(ty) > —A and since {(tg) = 0 , one has
&(to — 1) — A7 < 0 and thus the right-hand side in the inequality above is negative. This leads to a
contradiction and shows that &'(tp) < —A < —A. O

Proof of Theorem[1.1] We just have to show that v* satisfies in the viscosity sense
O + max{A, H*"(0yv), H"~(01v),..., HS = (0xv))} = 0at = 0.

Let A, > A be such that A, — A. By Lemma and [36, Theorem 2.11], v* is a super-solution of

o+ H@w)=0 in R x(0,T)
v(z,k,0) = vo(z, k) inR
o + max{A,,, H%* (6yv), H"~(¢1v),..., HS=(0gv))} = 0at 2 = 0.

By stability [36, Proposition 2.6], we then get that v* satisfies
ow + max{A, H* " (dyv), H"~(01v),..., H* " (0xv))} = 0 at = 0.

We now turn to the sub-solution property. Following [36, Theorem 2.7], v* being continuous and a

subsolution of the Hamilton-Jacobi equation in 7%,, is a subsolution at x = 0 with A = Ag. So we can
assume from now on that A > Aj. Arguing as above (taking A, < A with A,, — A), we then get that

o + max{A, H* (dyv), H"~ (01v),..., HS = (dgv))} <0 at z = 0.

A Appendix

A.1 Computation for Lemma

Let X := Xy — X;. We have P[X > m] < Kr™ for m € N and where r := (7 + 1)/2 € (0,1). So, for
q=1,

0 K 0
miP[X = m] Z miP[X = m] < 7 2 mir™.

0 m=1 m=1

E[[X]7] =

P8

Note that © — z9r? is increasing on [0, —¢/In(r)] and decreasing on [—¢/In(r), +]. So we can approx-
imate the sum in the right-hand side by

e} o0 0
K Z mir™ < g/ zirdr = _ 2K / yle Ydy = 721(6]! .
ro— r Jo rIn(r)[att Jo 7|In(r)[at!

A.2 Flux-limited solutions

Lemma A.1. Assume that e = (e*) is such that H*(—1/e*) = min, H*(p) for any k € {0,...,K}. The
solution of the junction problem without flux limiter:

O + H(0y7%) =0 in R x(0, +o0)
Do(2,k,0) = —z/e* inR (72)
OiVe + max{Ag, HOF (doie), HY~(017%), ..., HS " (0g1)} =0  atz =0.

s given by
Ve (2, k,t) = min {@a, (x, k) — Aot , —z/e* —tH"(—1/e")}. (73)
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Proof. By stability of super-solution, we classically have that 7. is a super-solution. Let us prove that it is
a sub-solution. First remark that for z # 0, (v, k,t) — ¢a,(z,k)— Aot and (z, k,t) — —z/eF—tH*(—1/e")
are (smooth) solutions of the equation. Then, using [9, Theorem 9.2 ii)], 7, is a sub-solution. We then
have to consider the case x = 0. Let ¢ be a test function such that 7, — ¢ reaches a minimum at (0, ¢o).
By [36, Theorem 2.7], it is sufficient to take ¢ such that ¢(x, k,t) = ¥ (t) + da,(z, k). Since for z close
to 0, we have . (z,t,k) = da,(z,k) — Aot (because Ag = H¥(—1/e¥)), we deduce that t — —Agt — (t)

reaches a minimum at ¢y and so ¥’(t) = —Ap. This implies that

Oip+max{Ag, H*F(0p0), H~(016), ..., H " (0x¢)) = —Ag+max{Ag, min H’(p),..., min HX(p)} =0
P P

and so 7, is a sub-solution. Finally, for ¢+ = 0, since Ay > H*(—1/e*), we have i.(z, k,0) = —x/e* <

¢Ao (m, k) O

Lemma A.2. Assume that 9. < —H°(—1/e°) and H° is convex. Then, the solution of

dyw + H(0,w) = 0 in (—o0,0) x (0, +o0)
w(z,0) = jx/eo in (—o0,0] (74)
w(0,t) = Jet for t = 0.

s unique and given by
w(x,t) := min{—x/e’ — H°(=1/e)t , p(l’g x + Dt} in (—00,0) x (0, +00). (75)

Proof. The proof is similar to the one of Lemma Indeed it is sufficient to remark that, by [36]
Proposition 2.12], w is solution of iff w is solution of

dyw + H(0,w) = 0in (—0,0) x (0, +0)
w(z,0) = —x/e® in (—mn0,0] (76)
dyw + max{A., H>T(ow)} =0 at x =0,

where A, = —1,.

A.3 Homogenization outside the junction

We consider a family of solutions (Uf) of (6) and define v° from (Uf) as in Section [i] Let us also fix a
set (a,b) x {k} x [to,t1] with tg <t1,a<b<0ifk=0and b>a>0if ke {1,...,K}. The following
result is an easy adaptation of [19].

Lemma A.3. There is a set Qo of full probability (independent of U€) such that, for any w € Q, if v*
is bounded above (respectively below) on (a,b) x {k} x [to,t1], then any half-relazed upper limit (resp.
half-relaxed lower limit) of v° as € — 0 (possibly up to a subsequence) is a viscosity subsolution (resp.
supersolution) of the Hamilton-Jacobi equation

ok, )+ Hk((%y(-, k,-)) = 0in (a,b) x {k} x [to,1].

A.4 Convexity of the effective Hamiltonians

Lemma A.4. Assume that the VZO are concave on [Amnin, +0) for any z € Z. Then VO is also concave
in [Amin, +0) and H® is convex in [—1/Apin,0]. In the same way, the H* are convex on [—7*/Ampin, 0]
for any ke {l,..., K}.

Proof. Recall that a one-to-one map ¢ : [ — J (where I and J are open intervals) is increasing and
concave if and only if ¢! is increasing and convex. Thus the maps (V?)~! (for z € Z) are increasing and

convex from (0,min. h% ) to (Amin,e°). Sov — E [(‘720)_1(@)] is also increasing and convex from

max,z’
: 0
(07 mings hmax,z’

(0, min, hglax’z,). As V0 is continuous and is constant after €°, we infer that V9 is concave on [Apin, +0).
Finally, as H%(p) = pV°(—1/p) on (=1/Awnin,0), H? is convex on this interval: indeed, if H° and V° are

smooth, then (H°)"(p) = p~3(V°)"(—~1/p) = 0; the general case can be treated by approximation. O

) t0 (Amin, €°). This shows that its inverse V9 is increasing and concave from (Apin, €°) to
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