Elastin-like Polypeptide-Based Bioink: A Promising Alternative for 3D Bioprinting. - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Biomacromolecules Année : 2021

Elastin-like Polypeptide-Based Bioink: A Promising Alternative for 3D Bioprinting.

Résumé

Three-dimensional (3D) bioprinting offers a great alternative to traditional techniques in tissue reconstruction, based on seeding cells manually into a scaffold, to better reproduce organs' complexity. When a suitable bioink is engineered with appropriate physicochemical properties, such a process can advantageously provide a spatial control of the patterning that improves tissue reconstruction. The design of an adequate bioink must fulfill a long list of criteria including biocompatibility, printability, and stability. In this context, we have developed a bioink containing a precisely controlled recombinant biopolymer, namely, elastin-like polypeptide (ELP). This material was further chemoselectively modified with cross-linkable moieties to provide a 3D network through photopolymerization. ELP chains were additionally either functionalized with a peptide sequence Gly-Arg-Gly-Asp-Ser (GRGDS) or combined with collagen I to enable cell adhesion. Our ELP-based bioinks were found to be printable, while providing excellent mechanical properties such as stiffness and elasticity in their cross-linked form. Besides, they were demonstrated to be biocompatible, showing viability and adhesion of dermal normal human fibroblasts (NHF). Expressions of specific extracellular matrix (ECM) protein markers as pro-collagen I, elastin, fibrillin, and fibronectin were revealed within the 3D network containing cells after only 18 days of culture, showing the great potential of ELP-based bioinks for tissue engineering.
Fichier principal
Vignette du fichier
Article_Elastin-like polypeptide based bioink a promising alternative for 3D bioprinting_Biomacromolecules with SI.pdf (2.34 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03426195 , version 1 (12-11-2021)

Licence

Paternité - Pas d'utilisation commerciale - Partage selon les Conditions Initiales

Identifiants

Citer

Michèle Dai, Jean-Philippe Belaïdi, Guillaume Fleury, Elisabeth Garanger, Maïté Rielland, et al.. Elastin-like Polypeptide-Based Bioink: A Promising Alternative for 3D Bioprinting.. Biomacromolecules, 2021, ⟨10.1021/acs.biomac.1c00861⟩. ⟨hal-03426195⟩

Collections

CNRS INC-CNRS LCPO
130 Consultations
270 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More