A hypergeometric proof that Iso is bijective - Archive ouverte HAL
Article Dans Une Revue Proceedings of the American Mathematical Society Année : 2022

A hypergeometric proof that Iso is bijective

Résumé

We provide a short and elementary proof of the main technical result of the recent article “Uniqueness of Clifford torus with prescribed isoperimetric ratio” by Thomas Yu and Jingmin Chen [Proc. Amer. Math. Soc. 150 (2022), pp. 1749–1765]. The key of the new proof is an explicit expression of the central function (Iso, to be proved bijective) as a quotient of Gaussian hypergeometric functions.
Fichier principal
Vignette du fichier
monoiso.pdf (409.77 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03426008 , version 1 (11-11-2021)

Identifiants

Citer

Alin Bostan, Sergey Yurkevich. A hypergeometric proof that Iso is bijective. Proceedings of the American Mathematical Society, 2022, 150 (5), pp.2131-2136. ⟨10.1090/proc/15836⟩. ⟨hal-03426008⟩
61 Consultations
53 Téléchargements

Altmetric

Partager

More