Many-Objective Optimization for Diverse Image Generation - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2021

Many-Objective Optimization for Diverse Image Generation

Petr Kungurtsev
  • Fonction : Auteur
  • PersonId : 1116457
Olivier Teytaud
  • Fonction : Auteur
  • PersonId : 1089196
Markus Wagner
  • Fonction : Auteur
  • PersonId : 1116458
Pak-Kan Wong
  • Fonction : Auteur
  • PersonId : 1116459
Vlad Hosu
  • Fonction : Auteur
  • PersonId : 1116460

Résumé

In image generation, where diversity is critical, people can express their preferences by choosing among several proposals. Thus, the image generation system can be refined to satisfy the user's needs. In this paper, we focus on multi-objective optimization as a tool for proposing diverse solutions. Multiobjective optimization is the area of research that deals with optimizing several objective functions simultaneously. In particular, it provides numerous solutions corresponding to trade-offs between different objective functions. The goal is to have enough diversity and quality to satisfy the user. However, in computer vision, the choice of objective functions is part of the problem: typically, we have several criteria, and their mixture approximates what we need. We propose a criterion for quantifying the performance in multi-objective optimization based on cross-validation: when optimizing n−1 of the n criteria, the Pareto front should include at least one good solution for the removed n th criterion. After providing evidence for the validity and usefulness of the proposed criterion, we show that the diversity provided by multiobjective optimization is helpful in diverse image generation, namely super-resolution and inspirational generation.
Fichier principal
Vignette du fichier
halArXiv.pdf (24.87 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03425742 , version 1 (11-11-2021)

Identifiants

  • HAL Id : hal-03425742 , version 1

Citer

Nathanaël Carraz Rakotonirina, Andry Rasoanaivo, Laurent Najman, Petr Kungurtsev, Jeremy Rapin, et al.. Many-Objective Optimization for Diverse Image Generation. 2021. ⟨hal-03425742⟩
156 Consultations
55 Téléchargements

Partager

More