On the study of hydrodynamic instabilities in the presence of background magnetic fields in high-energy-density plasmas - Archive ouverte HAL
Article Dans Une Revue Matter and Radiation at Extremes Année : 2021

On the study of hydrodynamic instabilities in the presence of background magnetic fields in high-energy-density plasmas

Résumé

Blast-wave-driven hydrodynamic instabilities are studied in the presence of a background B-field through experiments and simulations in the high-energy-density (HED) physics regime. In experiments conducted at the Laboratoire pour l’utilisation des lasers intenses (LULI), a laser driven shock-tube platform was used to generate a hydrodynamically unstable interface with a prescribed sinusoidal surface perturbation, and short-pulse x-ray radiography was used to characterize the instability growth with and without a 10-T B-field. The LULI experiments were modeled in FLASH using resistive and ideal magnetohydrodynamics (MHD), and comparing the experiments and simulations suggests that the Spitzer model implemented in FLASH is necessary and sufficient for modeling these planar systems. These results suggest insufficient amplification of the seed B-field, due to resistive diffusion, to alter the hydrodynamic behavior. Although the ideal-MHD simulations did not represent the experiments accurately, they suggest that similar HED systems with dynamic plasma-β(2μ0ρv2/B2) values of less than ∼100 can reduce the growth of blast-wave-driven Rayleigh–Taylor instabilities. These findings validate the resistive-MHD FLASH modeling that is being used to design future experiments for studying B-field effects in HED plasmas.
Fichier principal
Vignette du fichier
Manuel_MRE2021.pdf (2.96 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03424978 , version 1 (10-11-2021)

Identifiants

Citer

M. J. E Manuel, B Khiar, G Rigon, B Albertazzi, S R Klein, et al.. On the study of hydrodynamic instabilities in the presence of background magnetic fields in high-energy-density plasmas. Matter and Radiation at Extremes, 2021, 6, ⟨10.1063/5.0025374⟩. ⟨hal-03424978⟩
42 Consultations
57 Téléchargements

Altmetric

Partager

More