Energy decay for a system of Schrödinger equations in a wave guide
Résumé
We prove exponential decay for a system of two Schrödinger equations in a wave guide, with coupling and damping at the boundary. This relies on the spectral analysis of the corresponding coupled Schrödinger operator on the one-dimensional cross section. We show in particular that we have a spectral gap and that the corresponding generalized eigenfunctions form a Riesz basis.
Origine | Fichiers produits par l'(les) auteur(s) |
---|