Lyapunov functional and blow-up results for a class of perturbed semilinear wave equations in the critical case - Archive ouverte HAL
Article Dans Une Revue Journal of Hyperbolic Differential Equations Année : 2012

Lyapunov functional and blow-up results for a class of perturbed semilinear wave equations in the critical case

Mohamed Ali Hamza
  • Fonction : Auteur
Hatem Zaag

Résumé

We study a class of perturbations for the semilinear wave equation with critical power nonlinearity (in the conformal transform sense). Working in the framework of similarity variables, we introduce a Lyapunov functional for this problem. Using a two-step argument based on interpolation and a critical Gagliardo–Nirenberg inequality, we establish that the blow-up rate of any singular solution is given by the solution of the nonperturbed associated ODE, specifically u″ = u p .

Dates et versions

hal-03418394 , version 1 (07-11-2021)

Identifiants

Citer

Mohamed Ali Hamza, Hatem Zaag. Lyapunov functional and blow-up results for a class of perturbed semilinear wave equations in the critical case. Journal of Hyperbolic Differential Equations, 2012, 09 (02), pp.195-221. ⟨10.1142/S0219891612500063⟩. ⟨hal-03418394⟩
21 Consultations
0 Téléchargements

Altmetric

Partager

More