Experimental Analysis of Waverider Lift-to-Drag Ratio Measurements in Rarefied and Supersonic Regime
Résumé
This work, performed in the MARHY rarefied hypersonic facility, experimentally explores the effects of rarefaction on a classical waverider geometry. This hypersonic vehicle is designed to develop a shock attached along the leading edge length to improve flight efficiency. The concept was first proposed by Nonweiler in 1959. Since then, many studies have been conducted, mainly on numerical aspects. Few works have included the influence of the viscous effect, we can cite those of Bowcutt who showed how viscous effects impact the optimal shapes due to the skin friction drag. However, the trajectories of these types of vehicles anticipate flights with high Mach numbers and at high altitudes where rarefaction effects can strongly impact the lift-to-drag ratio predictions. This work focuses on the behavior of the L/D ratio at different supersonic operating conditions. The viscous effects were analyzed with 4 operating flow conditions: Mach 2 and 8 Pa static pressure and Mach 4 with 2, 8 and 71 Pa static pressures. For this purpose, the aerodynamic coefficients were measured for several angles of incidence. with a homemade sting balance. The experimental results were compared to Monte Carlo numerical simulations performed with the DS3V code.