Identity and difference: how topology helps to understand quantum indiscernability
Résumé
This contribution, to be published in Imagine Math 8 to celebrate Michele Emmer's 75th birthday,
can be seen as the second part of my previous considerations on the relationships between topology and physics (Mouchet, 2018).
Nevertheless, the present work can be read independently. The following mainly focusses on the connection
between topology and quantum statistics. I will try to explain to the non specialist how
Feynman's interpretation of quantum processes through interference
of classical paths (path integrals formulation), makes the dichotomy between
bosons and fermions quite natural in three spatial dimensions. In (effective) two dimensions,
the recent experimental evidence
of intermediate statistics (anyons) (Bartolomei et al. 2020) comfort that topology (of the braids) provides a fertile soil for our understanding
of quantum particles.
Origine | Fichiers produits par l'(les) auteur(s) |
---|