Control of spin–charge conversion in van der Waals heterostructures - Archive ouverte HAL Access content directly
Journal Articles APL Materials Year : 2021

Control of spin–charge conversion in van der Waals heterostructures

Frédéric Bonell
Matthieu Jamet
Alain Marty


The interconversion between spin and charge degrees of freedom offers incredible potential for spintronic devices, opening routes for spin injection, detection, and manipulation alternative to the use of ferromagnets. The understanding and control of such interconversion mechanisms, which rely on spin–orbit coupling, is therefore an exciting prospect. The emergence of van der Waals materials possessing large spin–orbit coupling (such as transition metal dichalcogenides or topological insulators) and/or recently discovered van der Waals layered ferromagnets further extends the possibility of spin-to-charge interconversion to ultrathin spintronic devices. Additionally, they offer abundant room for progress in discovering and analyzing novel spin–charge interconversion phenomena. Modifying the properties of van der Waals materials through proximity effects is an added degree of tunability also under exploration. This Perspective discusses the recent advances toward spin-to-charge interconversion in van der Waals materials. It highlights scientific developments which include techniques for large-scale growth, device physics, and theoretical aspects.
Fichier principal
Vignette du fichier
5.0054865.pdf (8.94 Mo) Télécharger le fichier
Origin : Publisher files allowed on an open archive
Comment : Copyright 2021 Author(s). This article is distributed under a Creative Commons Attribution (CC BY) License.

Dates and versions

hal-03409472 , version 1 (17-11-2021)





Regina Galceran, Bo Tian, Junzhu Li, Frédéric Bonell, Matthieu Jamet, et al.. Control of spin–charge conversion in van der Waals heterostructures. APL Materials, 2021, 9 (10), pp.100901. ⟨10.1063/5.0054865⟩. ⟨hal-03409472⟩
77 View
39 Download



Gmail Facebook Twitter LinkedIn More