Algebraic independence and linear difference equations - Archive ouverte HAL
Article Dans Une Revue Journal of the European Mathematical Society Année : 2024

Algebraic independence and linear difference equations

Résumé

We consider pairs of automorphisms (φ, σ) acting on fields of Laurent or Puiseux series: pairs of shift operators (φ : x → x + h1, σ : x → x + h2), of q-difference operators (φ : x → q1x, σ : x → q2x), and of Mahler operators (φ : x → x p 1 , σ : x → x p 2). Given a solution f to a linear φ-equation and a solution g to a linear σ-equation, both transcendental, we show that f and g are algebraically independent over the field of rational functions, assuming that the corresponding parameters are sufficiently independent. As a consequence, we settle a conjecture about Mahler functions put forward by Loxton and van der Poorten in 1987. We also give an application to the algebraic independence of q-hypergeometric functions. Our approach provides a general strategy to study this kind of question and is based on a suitable Galois theory: the σ-Galois theory of linear φ-equations.
Fichier principal
Vignette du fichier
AlgInde.pdf (434.45 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03403976 , version 1 (26-10-2021)

Identifiants

Citer

Boris Adamczewski, Thomas Dreyfus, Charlotte Hardouin, Michael Wibmer. Algebraic independence and linear difference equations. Journal of the European Mathematical Society, 2024, 26 (5), pp.1899-1932. ⟨10.4171/JEMS/1316⟩. ⟨hal-03403976⟩
145 Consultations
154 Téléchargements

Altmetric

Partager

More