VISUAL RELATIONSHIP DETECTION BASED ON GUIDED PROPOSALS AND SEMANTIC KNOWLEDGE DISTILLATION - Archive ouverte HAL
Communication Dans Un Congrès Année : 2018

VISUAL RELATIONSHIP DETECTION BASED ON GUIDED PROPOSALS AND SEMANTIC KNOWLEDGE DISTILLATION

François Plesse
  • Fonction : Auteur
  • PersonId : 1114721
Alexandru Ginsca
  • Fonction : Auteur
  • PersonId : 1114722
Françoise Prêteux
  • Fonction : Auteur
  • PersonId : 910458

Résumé

A thorough comprehension of image content demands a complex grasp of the interactions that may occur in the natural world. One of the key issues is to describe the visual relationships between objects. When dealing with real world data, capturing these very diverse interactions is a difficult problem. It can be alleviated by incorporating common sense in a network. For this, we propose a framework that makes use of semantic knowledge and estimates the relevance of object pairs during both training and test phases. Extracted from precomputed models and training annotations, this information is distilled into the neural network dedicated to this task. Using this approach, we observe a significant improvement on all classes of Visual Genome, a challenging visual relationship dataset. A 68.5% relative gain on the recall at 100 is directly related to the relevance estimate and a 32.7% gain to the knowledge distillation.
Fichier principal
Vignette du fichier
plesse_knoledge_distillation.pdf (533.77 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03402058 , version 1 (25-10-2021)

Identifiants

Citer

François Plesse, Alexandru Ginsca, Bertrand Delezoide, Françoise Prêteux. VISUAL RELATIONSHIP DETECTION BASED ON GUIDED PROPOSALS AND SEMANTIC KNOWLEDGE DISTILLATION. 2018 IEEE International Conference on Multimedia and Expo, Jul 2018, San Diego, United States. ⟨10.1109/ICME.2018.8486503⟩. ⟨hal-03402058⟩
17 Consultations
60 Téléchargements

Altmetric

Partager

More