Robust Semantic Segmentation with Superpixel-Mix - Archive ouverte HAL
Communication Dans Un Congrès Proceedings of the British Machine Vision Conference Année : 2021

Robust Semantic Segmentation with Superpixel-Mix

Nacim Belkhir
  • Fonction : Auteur
  • PersonId : 1020351
Mai Lan Ha
  • Fonction : Auteur
  • PersonId : 1114629
Yufei Hu
  • Fonction : Auteur
  • PersonId : 1114630
Andrei Bursuc
Volker Blanz
  • Fonction : Auteur
Angela Yao
  • Fonction : Auteur

Résumé

Along with predictive performance and runtime speed, robustness is a key requirement for real-world semantic segmentation. Robustness encompasses accuracy, predictive uncertainty, stability under data perturbation and distribution shift, and reduced bias. To improve robustness, we introduce Superpixel-mix, a new superpixel-based data augmentation method with teacher-student consistency training. Unlike other mixing-based augmentation techniques, mixing superpixels between images is aware of object boundaries, while yielding consistent gains in segmentation accuracy. Our proposed technique achieves state-of-the-art results in semi-supervised semantic segmentation on the Cityscapes dataset. Moreover, Superpixel-mix improves the robustness of semantic segmentation by reducing network uncertainty and bias, as confirmed by competitive results under strong distributions shift (adverse weather, image corruptions) and when facing out-of-distribution data.
Fichier non déposé

Dates et versions

hal-03400621 , version 1 (25-10-2021)

Identifiants

  • HAL Id : hal-03400621 , version 1

Citer

Gianni Franchi, Nacim Belkhir, Mai Lan Ha, Yufei Hu, Andrei Bursuc, et al.. Robust Semantic Segmentation with Superpixel-Mix. The British Machine Vision Conference (BMVC), Nov 2021, Online, United Kingdom. ⟨hal-03400621⟩
134 Consultations
0 Téléchargements

Partager

More