C-STEM: ENGINEERING NICHE-LIKE MICRO-COMPARTMENTS FOR OPTIMAL AND SCALE-INDEPENDENT EXPANSION OF HUMAN PLURIPOTENT STEM CELLS IN BIOREACTORS
Résumé
Human pluripotent stem cells (hPSCs) have emerged as the most promising cellular source for cell therapies. To overcome scale up limitations of classical 2D culture systems, suspension cultures have been developed to meet the need of large-scale culture in regenerative medicine. Despite constant improvements, current protocols relying on the generation of micro-carriers or cell aggregates only achieve moderate amplification performance. Here, guided by reports showing that hPSCs can self-organize in vitro into cysts reminiscent of the epiblast stage in embryo development, we developed a physio-mimetic approach for hPSC culture. We engineered stem cell niche microenvironments inside microfluidics-assisted core-shell microcapsules. We demonstrate that lumenized three-dimensional colonies maximize viability and expansion rates while maintaining pluripotency. By optimizing capsule size and culture conditions, we scale-up this method to industrial scale stirred tank bioreactors and achieve an unprecedented hPSC amplification rate of 282-fold in 6.5 days.
Origine | Fichiers produits par l'(les) auteur(s) |
---|