Nearly Tight Convergence Bounds for Semi-discrete Entropic Optimal Transport - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2021

Nearly Tight Convergence Bounds for Semi-discrete Entropic Optimal Transport

Résumé

We derive nearly tight and non-asymptotic convergence bounds for solutions of entropic semi-discrete optimal transport. These bounds quantify the stability of the dual solutions of the regularized problem (sometimes called Sinkhorn potentials) w.r.t. the regularization parameter, for which we ensure a better than Lipschitz dependence. Such facts may be a first step towards a mathematical justification of annealing or $\varepsilon$-scaling heuristics for the numerical resolution of regularized semi-discrete optimal transport. Our results also entail a non-asymptotic and tight expansion of the difference between the entropic and the unregularized costs.
Fichier principal
Vignette du fichier
bounds_entropic_sdot.pdf (608.3 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03396206 , version 1 (22-10-2021)
hal-03396206 , version 2 (29-11-2021)

Identifiants

  • HAL Id : hal-03396206 , version 1

Citer

Alex Delalande. Nearly Tight Convergence Bounds for Semi-discrete Entropic Optimal Transport. 2021. ⟨hal-03396206v1⟩
101 Consultations
67 Téléchargements

Partager

More