Characterization of Diamond and Silicon Carbide Detectors With Fission Fragments - Archive ouverte HAL
Article Dans Une Revue Frontiers in Physics Année : 2021

Characterization of Diamond and Silicon Carbide Detectors With Fission Fragments

Y.H. Kim
  • Fonction : Auteur
L. Abbassi
  • Fonction : Auteur
A. Bes
  • Fonction : Auteur
  • PersonId : 1302874
C. Boiano
  • Fonction : Auteur
S. Brambilla
  • Fonction : Auteur
T. Crozes
  • Fonction : Auteur
C. Destouches
  • Fonction : Auteur
F. Donatini
  • Fonction : Auteur
  • PersonId : 955802
Ł.W. Iskra
  • Fonction : Auteur
M. Jastrzab
  • Fonction : Auteur
A. Lyoussi
  • Fonction : Auteur
J.F. Motte
  • Fonction : Auteur
T. Nowak
  • Fonction : Auteur
J. Pernot
  • Fonction : Auteur
M. Rydygier
  • Fonction : Auteur
C. Sage
  • Fonction : Auteur
  • PersonId : 1392642

Résumé

Experimental fission studies for reaction physics or nuclear spectroscopy can profit from fast, efficient, and radiation-resistant fission fragment (FF) detectors. When such experiments are performed in-beam in intense thermal neutron beams, additional constraints arise in terms of target-detector interface, beam-induced background, etc. Therefore, wide gap semi-conductor detectors were tested with the aim of developing innovative instrumentation for such applications. The detector characterization was performed with mass- and energy-separated fission fragment beams at the ILL (Institut Laue Langevin) LOHENGRIN spectrometer. Two single crystal diamonds, three polycrystalline and one diamond-on-iridium as well as a silicon carbide detector were characterized as solid state ionization chamber for FF detection. Timing measurements were performed with a 500-µm thick single crystal diamond detector read out by a broadband amplifier. A timing resolution of ∼10.2 ps RMS was obtained for FF with mass A = 98 at 90 MeV kinetic energy. Using a spectroscopic preamplifier developed at INFN-Milano, the energy resolution measured for the same FF was found to be slightly better for a ∼50-µm thin single crystal diamond detector (∼1.4% RMS) than for the 500-µm thick one (∼1.6% RMS), while a value of 3.4% RMS was obtained with the 400-µm silicon carbide detector. The Pulse Height Defect (PHD), which is significant in silicon detectors, was also investigated with the two single crystal diamond detectors. The comparison with results from α and triton measurements enabled us to conclude that PHD leads to ∼50% loss of the initial generated charge carriers for FF. In view of these results, a possible detector configuration and integration for in-beam experiments has been discussed.

Dates et versions

hal-03394390 , version 1 (18-10-2021)
hal-03394390 , version 2 (22-10-2021)

Identifiants

Citer

M.L. Gallin-Martel, Y.H. Kim, L. Abbassi, A. Bes, C. Boiano, et al.. Characterization of Diamond and Silicon Carbide Detectors With Fission Fragments. Frontiers in Physics, 2021, 9, pp.732730. ⟨10.3389/fphy.2021.732730⟩. ⟨hal-03394390v1⟩
139 Consultations
128 Téléchargements

Altmetric

Partager

More