Newton-Type Methods For Simultaneous Matrix Diagonalization
Résumé
This paper proposes a Newton-type method to solve numerically the eigenproblem of several diagonalizable matrices, which pairwise commute. A classical result states that these matrices are simultaneously diagonalizable. From a suitable system of equations associated to this problem, we construct a sequence that converges quadratically towards the solution. This construction is not based on the resolution of a linear system as is the case in the classical Newton method. Moreover, we provide a theoretical analysis of this construction and exhibit a condition to get a quadratic convergence. We also propose numerical experiments, which illustrate the theoretical results.
Origine | Fichiers produits par l'(les) auteur(s) |
---|