Newton-Type Methods For Simultaneous Matrix Diagonalization - Archive ouverte HAL
Article Dans Une Revue Calcolo Année : 2022

Newton-Type Methods For Simultaneous Matrix Diagonalization

Résumé

This paper proposes a Newton-type method to solve numerically the eigenproblem of several diagonalizable matrices, which pairwise commute. A classical result states that these matrices are simultaneously diagonalizable. From a suitable system of equations associated to this problem, we construct a sequence that converges quadratically towards the solution. This construction is not based on the resolution of a linear system as is the case in the classical Newton method. Moreover, we provide a theoretical analysis of this construction and exhibit a condition to get a quadratic convergence. We also propose numerical experiments, which illustrate the theoretical results.
Fichier principal
Vignette du fichier
main.pdf (350.57 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03390265 , version 1 (21-10-2021)
hal-03390265 , version 2 (03-11-2022)

Identifiants

Citer

Rima Khouja, Bernard Mourrain, Jean-Claude Yakoubsohn. Newton-Type Methods For Simultaneous Matrix Diagonalization. Calcolo, 2022, ⟨10.1007/s10092-022-00484-3⟩. ⟨hal-03390265v2⟩
201 Consultations
269 Téléchargements

Altmetric

Partager

More