FAST MULTI-PRECISION COMPUTATION OF SOME EULER PRODUCTS - Archive ouverte HAL
Article Dans Une Revue Mathematics of Computation Année : 2021

FAST MULTI-PRECISION COMPUTATION OF SOME EULER PRODUCTS

Guillaume Bertoli
  • Fonction : Auteur
Gilles Vilmart

Résumé

For every modulus q ≥ 3, we define a family of subsets A of the multiplicative group (Z/qZ) × for which the Euler product p+qZ∈A (1 − p −s) can be computed with high numerical precision, where s > 1 is some given real number. We provide a Sage script to do so, and extend our result to compute Euler products p+qZ∈A F (1/p s)/H(1/p s) where F and H are polynomials with real coefficients, when this product converges absolutely. This enables us to give precise values of several Euler products occurring in number theory.
Fichier principal
Vignette du fichier
LoeschianConstant-NS-04-MCOMP.pdf (443.78 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03381427 , version 1 (16-10-2021)

Identifiants

Citer

Guillaume Bertoli, Christophe Besse, Gilles Vilmart. FAST MULTI-PRECISION COMPUTATION OF SOME EULER PRODUCTS. Mathematics of Computation, 2021, 90 (331), pp.2247-2265. ⟨10.1090/mcom/3630⟩. ⟨hal-03381427⟩
33 Consultations
57 Téléchargements

Altmetric

Partager

More