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FAST MULTI-PRECISION COMPUTATION OF SOME EULER

PRODUCTS

S. ETTAHRI, O. RAMARÉ, AND L. SUREL

Abstract. For every modulus q ≥ 3, we define a family of subsets A of the

multiplicative group (Z/qZ)× for which the Euler product
∏

p+qZ∈A(1− p−s)

can be computed with high numerical precision, where s > 1 is some given real
number. We provide a Sage script to do so, and extend our result to compute

Euler products
∏

p+qZ∈A F (1/ps)/H(1/ps) where F and H are polynomials

with real coefficients, when this product converges absolutely. This enables us

to give precise values of several Euler products occurring in number theory.

1. Introduction

In formula (16) of [16], D. Shanks obtained the following closed expression to
compute the Landau-Ramanujan constant:

(1.1)
∏
p≡3[4]

1

1− 1/ps
=
∏
k≥0

(
ζ(2ks)(1− 2−2ks)

L(2ks, χ1,4)

)1/2k+1

where s > 1 and χ1,4 is the (only) non-principal Dirichlet character modulo 4. Since

both ζ(2ks) and L(2ks, χ1,4) are 1 +O(1/2s2
k

), we only need to compute O(logD)
values of L-functions (including the Riemann ζ-function) to obtainD decimal digits.
In this paper, we generalize this process in several directions, but a main feature
of our work is that it applies only to Euler products over primes belonging to
some special subsets of G = (Z/qZ)× that we define below. We obtain closed
formulas involving only values of L-functions of Dirichlet characters for rational
Euler products over primes in these special sets and deduce fast ways to compute
a more restricted class of such products. Let us first introduce the players.

Definition 1.1. Two elements g1 and g2 of the abelian group G are said to be
lattice-invariant if and only if they generate the same group. This defines an equiv-
alence relation.

We denote the set of lattice invariant classes by G] and the set of cyclic subgroups
of G by G . The map between G and G] which, to a subgroup, associates the subset
of its generators, is one-to-one.

The cardinality of G] can be swiftly inferred from [18, Theorem 3] or from [19,
Theorem 1], both by L. Tóth. When A is a subset of G = (Z/qZ)×, we define 〈A〉
to be the (multiplicative) subgroup generated by A.
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2 S. ETTAHRI, O. RAMARÉ, AND L. SUREL

For any Dirichlet character χ modulo q and any parameter P ≥ 2, we define

(1.2) LP (s, χ) =
∏
p≥P

(1− χ(p)/ps)−1

and correspondingly ζP (s) =
∏
p≥P (1− 1/ps)−1.

Given K a subgroup of G = (Z/qZ)×, we denote by K⊥ the subgroup of Dirichlet
characters modulo q that take the value 1 on K. When s is a real number, the
number

∏
χ∈K⊥ LP (s, χ) is indeed a positive real number because, when χ belongs

to K⊥, so does χ.
Here is the central theorem of this paper.

Theorem 1.2. Let q be some modulus and A be a lattice-invariant class of G =
(Z/qZ)×. Let F,H ∈ R[X] be two polynomials satisfying F (0) = H(0) = 1 and
let ∆ ≥ 1 be an integer such that (F (X) − H(X))/X∆ ∈ R[X]. Let β ≥ 2 be an
upper bound for the maximum modulus of the inverses of the roots of F and of H.
Let σ1, σ2, · · · , σdegF be the roots of F (a multiple root appears as many times as
its multiplicity), and similarly, let ρ1, ρ2, · · · , ρdegH be the roots of H. For any
non-negative integer d, we set

(1.3) sH/F (d) =
∑

1≤i≤degH

ρ−di −
∑

1≤j≤degF

σ−dj .

Let P and s > 1/∆ be two real parameters such that P s ≥ 2β. We define, for any
cyclic subgroup K of G and any positive integer m,

(1.4) CA (K,m,F/H) =
∑
t|m

µ(t)sH/F (m/t)
∑
L∈G ,

L[t]=〈A 〉,
K⊂L

µ(|L|/|K|)
|G/K|

where L[t] = {xt, x ∈ L} and 〈A 〉 is the subgroup generated by A . We have

(1.5)
∏
p≥P,

p+qZ∈A

F (1/ps)

H(1/ps)
=
∏
m≥∆

∏
K∈G

( ∏
χ∈K⊥

LP (ms, χ)

)CA (K,m,F/H)/m

.

For any positive real-valued parameter M , the following bound holds true:

(1.6) ± log
∏

m≥M+1

∏
K∈G

( ∏
χ∈K⊥

LP (ms, χ)

)CA (K,m,F/H)

m

≤ 4(degF + degH)|G |2(s+ P )

(
β

P s

)M+1

.

In the caseH/F = 1−X, the relevant identity is proved in Theorem 2.6 and is the
heart of this paper. Our result applies in particular to A = {1} and to A = {−1}.
When q = 4 and A = {−1}, we readily find that only t = 1 matters in (1.4), that
C{−1}({1}, 2k, 1/(1 − X)) = −1/2 and that C{−1}({±1}, 2k, 1/(1 − X)) = 1. On
recalling Lemma 2.4, this results in (1.1).

Remark 1.3. Lemma 3.3 ensures that we may select

β = max
(

2,
∑

1≤k≤degF

|ak|,
∑

1≤k≤degH

|bk|
)
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when F (X) = 1 + a1X + . . . + aδX
δ and H(X) = 1 + b1X + . . . + bδ′X

δ′ . Notice
that our assumptions imply that bi = ai when i < ∆.

Remark 1.4. The numbers sH/F (n) may be computed via the Girard-Newton rela-
tions recalled in Lemma 3.1.

Remark 1.5. We prove in Lemma 3.4 that, when K and A are fixed, the quantity∑
L∈G ,

L[t]=〈A 〉,
K⊂L

µ(|L|/|K|) depends only on gcd(t, ϕ(q)).

Remark 1.6. We have CA (K,m,F/H) = −CA (K,m,H/F ), a property we shall
use to simplify the typography.

Remark 1.7. There is some redundancy in our formula as a same character χ may
appear in several sets K⊥ (for instance, the principal character appears in all of
them). Disentangling these contributions leads to a slightly more complicated for-
mula. We first have to introduce, for any cyclic subgroup S, the subset S⊥◦ ⊂ S⊥
constituted of those elements that do not belong to any T⊥, for T  S. It can be
readily checked that any K⊥ is the union of S⊥◦ where S ranges the subgroups
that are included in K. We then define

(1.7) C◦A (S,m,F/H) =
∑
t|m

µ(t)sH/F (m/t)
∑
L∈G ,

L[t]=〈A 〉,
S⊂L

ϕ(|L|/|S|)
|G/S|

.

Formula (1.5) becomes:

(1.8)
∏
p≥P,

p+qZ∈A

F (1/ps)

H(1/ps)
=
∏
m≥∆

∏
S∈G

( ∏
χ∈S⊥◦

LP (ms, χ)

)C◦A (S,m,F/H)/m

and the bound (1.6) holds to estimate the tail of this product, as we only shuffled
terms with a fixed index m.

Super fast evaluations.

Corollary 1.8. For every positive integer m, the constant CA (K,m, 1−X) van-
ishes when one prime factor of m is coprime with ϕ(q). As a consequence and
under the hypotheses of Theorem 1.2 with ∆ = 1, the products∏

p≥P,
p+qZ∈A

(
1− 1

ps

)

may be computed by O((logD)r) computations of L-functions to get D-decimal
digits, where r is the number of prime factors of ϕ(q). The implied constant in the
O-symbol may depend on q.

This leads to very fast computations, and we were for instance able to produce
100 (resp. 1000, resp. 5000) digits of these products when q = 3 in a third of a second
(resp. 12 seconds, resp. 35 minutes with P = 400) on a usual desktop computer. See
the implementation notes at the end of this paper. Notice however that the number
of L-values required is not the only determinant: when q increases, the dependence
in q matters as the character group increases in size, and when the required precision
increases, each computation of an L-value may take a long time. We do not address
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the issue of these computations here. We present some timing data at the end of
this paper.

Proof of Corollary 1.8. Lemma 2.4 tells us that CA (K,m, 1 − X) vanishes when
one prime factor of m is coprime with ϕ(q). Let us decompose ϕ(q) in prime factors:
ϕ(q) = pα1

1 · · · pαr
r . Any integer m ≤ M such that all its prime factors divide q,

can be written as m = pβ1

1 · · · pβr
r with βi ≤ (logM)/ log pi for i ≤ r. In particular,

there are at most ((logM)/ log 2)r such integers. By (1.6), the contribution of the
integers m > M to the Euler product to be computed is 1 +O((β/P s)M ), which is
1+O(2−M ) by the assumption P s ≥ 2β. We want this error term to be 1+O(10−D)
to get about D + O(1) decimal digits. This is ensured by M log 2 ≥ D log 10, i.e.
it is enough to take M = 4D. �

In order to extend this property to other Euler products, many of the coefficients
CA (K,m,F/H) should vanish when m varies. This is however not likely to happen,
except when F/H is a product/quotient of cyclotomic polynomials. Indeed the co-
efficients sH/F (m) satisfy a linear recurrence (of degree at most max(degF,degH))
and as such are expected to grow exponentially fast if they are not roots of unity.
When for instance the coefficients of the recurrence belong to some number field,
this is proved by Evertse in [3] and independently by van der Poorten and Schlick-
ewei in [20]. This is the case where we may expect cancellations to happen. Since
the sum defining CA (K,m,F/H) is of the form

∑
t|m µ(t)r0(t)sH/F (m/t) for some

function r0(t) that remains bounded (it takes only a finite set of values), it is domi-
nated by the term t = 1 when m is large enough; no cancellation due to the Möbius
factor can be expected either. We are then left with the case of cyclotomic polyno-
mials, but they can be easily dealt with using Corollary 1.8; indeed, if we denote
by Φn the n-th cyclotomic polynomial, the identity

∏
d|n Φd(X) = Xn − 1 gets

inverted to Φn(X) =
∏
d|n(Xd − 1)µ(n/d).

A Sage script. The material of this paper has been used to write a Sage script
using Python 3 which can be found on the webpage of the second author:
http://iml.univ-mrs.fr/~ramare/Maths/LatticeInvariantEulerProducts-06.sage

We shorten this name throughout this paper in LIEP.sage. We give some details
about this script when developing the proof below. We also provide on the second
author’s webpage the first hundred digits of several Euler products:

http://iml.univ-mrs.fr/~ramare/Maths/SomeEulerProducts-02.pdf

The function GetEulerProds(q, s, F, H, nbdecimals) gives all these Euler
products. The polynomials F and H are to be given as polynomial expressions
with the variable x. The special function GetVs(q, s, nbdecimals) gives all the
Euler products of Corollary 1.8.

Some historical pointers. D. Shanks in [14] (resp. [15], resp. [17]) has already
been able to compute an Euler product over primes congruent to 1 modulo 4 (resp.
to 1 modulo 8 in both instances), by using an identity (Lemma of section 2 for [14],
Equation (5) in [15] and the Lemma of section 3 in [17]) that is a precursor of our
Lemma 3.1.

In these three examples, the author has only been able to compute the first five
digits, and this is due to three facts: the lack of an interval arithmetic package at
that time, the relative weakness of the computers and the absence of a proper study
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of the error term. We thus complement these results by giving the first hundred
decimals.

Complementary to the published papers, three influent preprints on how to com-
pute Euler products with high accuracy have been floating on the web: [5] a memo
started in 1990 in its 1996 version by Ph. Flajolet and I. Vardi, [1] by H. Cohen
and [7] by X. Gourdon and P. Sebah. Comparing the desired constant with zeta-
values is the overarching idea. The set of zeta-values is extended to L-values of
(some) quadratic characters in the three, in some way or another, and to the val-
ues of Dedekind zeta-function in [1]. No complete error term analysis is presented,
sometimes because the series used are simple enough to make this analysis rather
easy. These three sources also deal with constants that are sums over primes and
a similar extension of our work is possible, but kept for later. It should be noticed
that Equation (20) from [5] is in fact the formula given as Equation (16) in [16] for
the Landau-Ramanujan constant.

On the methodology. We decided to prove Theorem 1.2 directly, by giving the
formula and shuffling terms. This gives a short and self-contained proof. However,
we did not come up with the coefficients CA (K,m,F/H) by some lucky strike!
There is a path leading from abelian field theory to our expression that is much
closer to D. Shanks’s approach. We say more on this subject in section 4.

Application to some constants. This paper has been inspired by the wish to
compute with high numerical precision two constants that appear in the paper [6]

by É. Fouvry, C. Levesque and M. Waldschmidt. In the notation of that paper,
they are

(1.9) α
(3)
0 =

1

31/4
√

2

∏
p≡2[3]

(
1− 1

p2

)−1/2

and

(1.10) β0 =
31/4
√
π

25/4

log(2 +
√

3)1/4

Γ(1/4)

∏
p≡5,7,11[12]

(
1− 1

p2

)−1/2

.

Both occur in number theory as densities. The number of integers n of the shape
n = x2 − xy + y2, where x and y are integers (these are the so-called Loeschian
numbers, see the sequence A003136 entry in [12]) is asymptotically approximated
by

(1.11) N(x) = α
(3)
0

x(1 + o(1))√
log x

.

This motivates our interest in the first constant. The second one arises in counting
the number of Loeschian numbers that are also sums of two squares (see sequence
A301430 entry of [12]), namely we have

N ′(x) = β0
x(1 + o(1))

(log x)3/4
.

From the sequence A301429 entry in [12], we know that α
(3)
0 = 0.638909 . . . but

we would like to know (many!) more digits. Similarly it is known that β0 =
0.30231614235 . . ..



6 S. ETTAHRI, O. RAMARÉ, AND L. SUREL

Corollary 1.9. We have

α
(3)
0 = 0.63890 94054 45343 88225 49426 74928 24509 37549 75508 02912

33454 21692 36570 80763 10027 64965 82468 97179 11252 86643 · · ·
and

β0 = 0.30231 61423 57065 63794 77699 00480 19971 56024 12795 18936

96454 58867 84128 88654 48752 41051 08994 87467 81397 92727 · · ·

This follows from Theorem 1.2 with the choices q = 3 and A = {2} for α
(3)
0 , and

q = 12 and A = {5, 7, 11} for β0. The other parameters are uniformly selected as
F (X) = 1−X2, H(X) = 1, ∆ = 2, β = 2 and s = 1.

Corollary 1.10 (Shanks’ Constant). We have∏
p≡1[8]

(
1− 4

p

)(
p+ 1

p− 1

)2

= 0.95694 53478 51601 18343 69670 57273 89182 87531

74977 2913914789 05432 60424 60170 16444 88885

94814 40512 03907 95084 · · ·
As a consequence Shanks’ constant satisfies

I =
π2

16 log(1 +
√

2)

∏
p≡1[8]

(
1− 4

p

)(
p+ 1

p− 1

)2

= 0.66974 09699 37071 22053 89224 31571 76440 66883 70157 43648

24185 73298 52284 52467 99956 45714 72731 50621 02143 59373 · · ·
We deduce this Corollary from Theorem 1.2 by selecting the parameters q = 8,

A = {1}, F (X) = 1 − 2X − 7X2 − 4X3, H(X) = 1 − 2X + X2, s = 1, ∆ = 2
and β = 4. As explained in [15], the number of primes ≤ X of the form m4 + 1
is conjectured to be asymptotically equal to I · X1/4/ logX. The name “Shanks’
constant” comes from Chapter 2, page 90 of [4].

When using the script that we introduce below, this value is obtained by multi-

plying by π2

16 log(1+
√

2)
the value obtained with the call

GetEulerProds(8, 1, 1-2*x-7*x^2-4*x^3, 1-2*x+x^2, 110, 50, 2, 1).

A note is required here: the script evaluates loosely the required working precision
in order to get say 100 correct digits at the end. The results are however presented
with the precision obtained, and if we had been asking initially for 100 decimal
digits, the script would issue only 94 of them. We could have implemented a
mechanism that increases the precision until the result satisfies the request, but we
have prefered to let the users increase the precision by themselves. When asking
for 110 decimal digits, the script is able to compute 106 of them. We can get a
thousand decimals for this constant in about 2 minutes on a usual desktop computer
(by asking for 1010 decimal digits), see the implementation notes at the end of this
paper.

Corollary 1.11 (Lal’s Constant). We have∏
p≡1[8]

p(p− 8)

(p− 4)2
= 0.88307 10047 43946 67141 78342 99003 10853 46768

88834 88097 34707 19295 15939 52119 46990 65659

68857 99383 28603 79164 · · ·
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As a consequence Lal’s constant satisfies

λ =
π4

27 log2(1 +
√

2)

∏
p≡1[8]

(
p+ 1

p− 1

)4(
1− 8

p

)

=
π4

27 log2(1 +
√

2)

∏
p≡1[8]

(
1− 4

p

)2(
p+ 1

p− 1

)4 ∏
p≡1[8]

p(p− 8)

(p− 4)2

= 0.79220 82381 67541 66877 54555 66579 02410 11289 32250 98622

11172 27973 45256 95141 54944 12490 66029 53883 98027 52927 · · ·

We deduce the first value given in this Corollary by using Theorem 1.2 with the
parameters q = 8, A = {1}, F (X) = 1−8X, H(X) = 1−8X+16X2, s = 1, ∆ = 2
and β = 8. The value of Lal’s constant λ is then deduced by combining the value
obtained in Corollary 1.10 together with this one. This splitting of the computation
in two introduces smaller polynomials and this leads to a lesser running time. As
explained in [17], the number of primes ≤ X of the form (m+1)2 +1 and such that
(m − 1)2 + 1 is also prime, is conjectured to be asymptotic to λ · X1/2/(logX)2.
The name “Lal’s Constant” comes from the papers [8] and [17]. When using the
script that we introduce below, the first value is obtained with the call

GetEulerProds(8, 1, 1-8*x, 1-8*x+16*x^2, 110, 50, 2, 1).

If this call requires about 2 seconds on a usual desktop computer, this time increases
to 4 minutes when we ask for a thousand digits. We did not try to get 5000 digits
as we did for the products of Corollary 1.8.

We close this section by mentioning another series of challenging constants.
In [10], P. Moree computes inter alia the series of constants Aχ defined six lines
after Lemma 3, page 452, by

(1.12) Aχ =
∏
p≥2

(
1 +

(χ(p)− 1)p

(p2 − χ(p))(p− 1)

)
,

where χ is a Dirichlet character. Our theory applies only when χ is real valued.

A closed formula for primitive roots. Let us recall that a primitive root n
modulo q is an integer such that the class of n generates G = (Z/qZ)×. It is a
classical result that such an element exists if and only if q is equal to 2 or 4, or is
equal to a prime power of an odd prime or to twice such a prime power.

Corollary 1.12. Let A0 be the subset of G = (Z/qZ)× consisting of all the multi-
plicative generators of G. Assume q is such that such an A0 is not empty. For any
real parameter P ≥ 2 and s > 1, we have

ζP (s; q,A0) =
∏
m|q∞

∏
S∈G

( ∏
χ∈K⊥◦

LP (ms, χ)

)e(m,q,S)

,

where m|q∞ means that all the prime factors of m divide q and where e(m, q, S) =
|S|ϕ(q/|S|)
mϕ(q) .

Proof. Indeed, since A0 generates G, the only index t in (1.7) is t = 1. Hence, only
L = G is possible. �
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Thanks. The authors thank M. Waldschmidt for having drawn their attention to
this question, P. Moree and É. Fouvry for helpful discussions on how to improve
this paper and X. Gourdon for exchanges concerning some earlier computations.
The referees are also to be warmly thanked for their very careful reading and for
ideas on how to improve both the presentation and the corresponding script.

2. Proof of Theorem 1.2 when F/H = 1/(1−X)

We follow the notation introduced in (1.4). Since here F/H = 1/(1 −X), this
leads us to consider, for any cyclic subgroup K ∈ G , any class A in G] and any
positive integer m, the coefficient

(2.1) CA (K,m, 1−X) =
∑
t|m

µ(t)
∑
L∈G ,

L[t]=〈A 〉

µ(|L|/|K|)
|G/K|

where L[t] = {xt, x ∈ L}. Notice that it is also a cyclic subgroup of G. Let us first
note a simple property.

Lemma 2.1. In a finite cyclic group L, the map that associates to a subgroup of
L its cardinality is a one-to-one map between the set of divisors of |L| and the set
of its subgroups. Furthermore, any subgroup of a cyclic group is cyclic.

Proof. We can assume that L = (Z/`Z,+). For each d|`, the unique subgroup of
order d is {(`/d)n, 0 ≤ n ≤ d− 1}. �

Here is the fundamental property satisfied by these coefficients.

Proposition 2.2. For any positive integer `, any prime p and any lattice-invariant
class A , we have ∑

hm=`

∑
K∈G ,
χ∈K⊥

χ
(
ph
)
CA (K,m, 1−X) = 11p∈A .

Proof. Let S be the left-hand side sum to be evaluated. Let B be the subgroup
generated by p. By using the orthogonality of characters, we readily obtain

S =
∑
hm=`

∑
K∈G ,

B[h]⊂K

|G/K|CA (K,m, 1−X).

Next, we introduce the expression given in (2.1), shuffle the summations and get

S =
∑
hm=`

∑
t|m

µ(t)
∑
L∈G ,

L[t]=〈A 〉

∑
K∈G ,

B[h]⊂K

µ(|L|/|K|).

By Lemma 2.1 and the Möbius function characteristic property, the last summation
vanishes when B[h] 6= L and takes the value 1 otherwise. Since (B[h])[t] = B[ht],
this gives us

S =
∑
hm=`

∑
t|m,

B[ht]=〈A〉

µ(t).



FAST MULTI-PRECISION COMPUTATION OF SOME EULER PRODUCTS 9

We continue in a more classical way:

S =
∑
ath=`,

B[ht]=〈A〉

µ(t) =
∑
ab=`,

B[b]=〈A〉

∑
t|b

µ(t) = 11B=〈A〉,

concluding the proof. �

Corollary 2.3. For any prime p, any positive real number s and any lattice-
invariant class A , we have∏
m≥1

∏
K∈G

( ∏
χ∈K⊥

(
1−χ(p)p−ms

))−CA (K,m,1−X)/m

=

{
(1− p−s)−1 when p ∈ 〈A 〉,
1 otherwise.

Proof. We first check that, for any positive integer m and any subgroup K, we have

exp
∑
χ∈K⊥

∑
h≥1

χ(ph)

hpmhs
=

∏
χ∈K⊥

(
1− χ(p)

pms

)−1

.

Since s is a positive real number, the right-hand side is also positive, and so can
be raised to some rational power, say c. The sum inside the exponential is also
a real number and the equation expx = y leads obviously to exp(cx) = yc. The
right-hand side of our lemma may thus be written expS(p) where

S(p) =
∑
m≥1

∑
K∈G

∑
χ∈K⊥

∑
h≥1

χ(ph)CA (K,m, 1−X)

mhpmhs
.

We set ` = mh and appeal to Proposition 2.2 to infer that

S(p) =
∑
`≥1

1

`p`s
11p∈A ,

from which our corollary follows readily. �

Lemma 2.4. If m has a prime factor that does not divide ϕ(q), we have CA (K,m, 1−
X) = 0.

Proof. When F/H = 1−X, we have sH/F (m) = −1 uniformly in m. If m = m1p
a

for some m1 prime to p and p prime to the order ϕ(q) of G, any divisor t of m
factors in t1p

b where t1|m1 and b ≤ a. The Möbius coefficient reduces these choices
to b = a or to b = a − 1 and since we have L[t] = L[t1], both are possible. If we
denote the contribution of pat1 to CA (K,m, 1−X) by S1 say, the contribution or
pa−1t1 is −S1, and on pairing them we get zero. �

Lemma 2.5. Let f > 1 be a real parameter. We have∣∣log ζP (f)
∣∣ ≤ 1 + P/(f − 1)

P f
.

Proof. We use

log ζP (f) = −
∑
p≥P

∑
k≥1

1

kpkf

hence, by using a comparison to an integral, we find that∣∣∣log ζP (f)
∣∣∣ ≤∑

n≥P

1

nf
≤ 1

P f
+

∫ ∞
P

dt

tf
=

(
f − 1

P
+ 1

)
1

(f − 1)P f−1
. �
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Theorem 2.6. For every s > 1 and every P ≥ 2, we have

ζP (s; q,A) =
∏

p+qZ∈A,
p≥P

(1− p−s)−1 =
∏
m≥1

∏
K∈G

( ∏
χ∈K⊥

LP (ms, χ)

)CA (K,m,1−X)/m

.

Proof. This is a simple consequence of Corollary 2.3. Indeed, we may shuffle our
series to our fancy by the absolute summability ensured by the condition s > 1
and the bounds |CA (K, k)/k| ≤ |G|, as well as |G | ≤ |G|. This last bound follows
from the fact that there are at most as many cyclic subgroups as there are possible
generators. �

3. Proof of Theorem 1.2 in general

Let us recall the Witt decomposition. The readers will find in [9, Lemma 1] a
result of the same flavour. We have simply modified the proof and setting as to
accomodate polynomials having real numbers for coefficients.

Lemma 3.1. Let F (t) = 1 + a1t + . . . + aδt
δ ∈ R[t] be a polynomial of degree δ.

Let α1, . . . , αδ be the inverses of its roots. Put sF (k) = αk1 + . . . + αkδ . The sF (k)
are integers and satisfy the Newton-Girard recursion

(3.1) sF (k) + a1sF (k − 1) + . . .+ ak−1sF (1) + kak = 0,

where we have defined aδ+1 = aδ+2 = . . . = 0. Put

(3.2) bF (k) =
1

k

∑
d|k

µ(k/d)sF (d).

Let β ≥ 1 be such that β ≥ maxj |1/αj |. When t belongs to any segment ⊂ (−β, β),
we have

(3.3) F (t) =

∞∏
j=1

(1− tj)bF (j)

where the convergence is uniform in the given segment.

Proof. Since we follow the proof of [9, Lemma 1], we shall be rather sketchy. We
write F (t) =

∏
i(1− αit). By logarithmic differentiation, we obtain

tF ′(t)

F (t)
=
∑
i

αit

1− αit
=
∑
k≥1

sF (k)tk.

This series is absolutely convergent in any disc |t| ≤ b < 1/β where β = maxj(1/|αj |).
We proceed by expressing sF in terms of bF via (3.2) in a disc of radius b < 1/β.
After some shuffling of the terms, we reach the expression

tF ′(t)

F (t)
=
∑
j≥1

bF (j)
jtj

1− tj
.

The lemma follows readily by integrating the above relation. �

How does the mathematician E. Witt enter the scene? In the paper [21] on
Lie algebras, Witt produced in equation (11) therein a decomposition that is the
prototype of the above expansion.
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Lemma 3.2. We use the hypotheses and notation of Lemma 3.1. Let β ≥ 2 be
larger than the inverse of the modulus of all the roots of F (t). We have

|bF (k)| ≤ 2 degF · βk/k.

Proof. We clearly have |sF (j)| ≤ degF · βj , so that

|bF (k)| ≤ degF

k

∑
1≤j≤k

βj ≤ degF

k
β
βk − 1

β − 1

≤ degF

k

βk

1− 1/β
≤ 2 degF

βk

k
. �

There are numerous easy upper estimates for the inverse of the modulus of all
the roots of F (t) in terms of its coefficients. Here is a simplistic one.

Lemma 3.3. Let F (X) = 1 + a1X + . . . + aδX
δ be a polynomial of degree δ. Let

ρ be one of its roots. Then either |ρ| ≥ 1 or 1/|ρ| ≤ |a1|+ |a2|+ . . .+ |aδ|.

Proof. On noticing that

(1/ρ)δ = −a1(1/ρ)δ−1 − a2(1/ρ)δ−2 − . . .− aδ,

the conclusion follows. �

Lemma 3.4. The sum
∑
L∈L µ(|L|/|K|) where L = {L ∈ G /L[t] = 〈A 〉 and K ⊂

L} depends only on gcd(t, ϕ(q)).

Proof. Let us call this quantity r0(t). We first check that it depends only on
t mod ϕ(q): this follows from the fact that the map x 7→ xϕ(q) reduces to the
identity over G. Secondly, any prime factor of t, say p′, that is prime to ϕ(q), may

be removed from t, i.e. r0(t) = r0(t/p′): the map x 7→ xp
′

is one-to-one in L.
The lemma is an immediate consequence of these two remarks. �

Proof of Theorem 1.2. The proof requires several steps. The very first one is a
direct consequence of (3.3), which leads to the identity

(3.4)
F (t)

H(t)
=

∞∏
j=∆

(1− tj)bF (j)−bH(j).

The absence of the term with j < ∆ is due to our assumption that (F (X) −
H(X))/X∆ ∈ R[X]. Up to this point (3.4) is only established as a formal identity.
Our second step is to establish (3.4) for all t ∈ C with |t| < 1/β. By Lemma 3.2,
we know that |bF (j)−bH(j)| ≤ 4 max(degF,degH)βj/j. Therefore, for any bound
J , we have

(3.5)
∑

j≥J+1

|tj ||bF (j)− bH(j)| ≤ 4 max(degF,degH)
|tβ|J+1

(1− |tβ|)(J + 1)
,

as soon as |t| < 1/β. We thus have

(3.6)
F (t)

H(t)
=

∏
∆≤j≤J

(1− tj)bF (j)−bH(j) × I1,
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where | log I1| ≤ 4 max(degF,degH)|tβ|J+1/[(1− |tβ|)(J + 1)]. Now that we have
the expansion (3.6) for each prime p, we may combine them. We readily get

∏
p≥P,

p+qZ∈A

F (1/ps)

H(1/ps)
=

∏
p≥P,

p+qZ∈A

∏
∆≤j≤J

(1− p−js)bF (j)−bH(j) × I2,

where I2 satisfies

| log I2| ≤ 4 max(degF,degH)
∑
p≥P

βJ+1

1− β/P s
1

(J + 1)p(J+1)s

≤ 4 max(degF,degH)βJ+1

(1− β/P s)(J + 1)

(
1

P (J+1)s
+

∫ ∞
P

dt

t(J+1)s

)
≤ 4 max(degF,degH)(β/P s)Jβ

(1− β/P s)(J + 1)

(
1

P s
+

1

Js+ s− 1

)
,

since P ≥ 2 and J ≥ 3. Letting J go to infinity, we see that when P s > β and
s > 1/∆,

∏
p≥P,

p+qZ∈A

F (1/ps)

H(1/ps)
=
∏
j≥∆

∏
p≥P,

p+qZ∈A

(1− p−js)bF (j)−bH(j) =
∏
j≥2

ζP (js; q,A )bH(j)−bF (j)

in the notation of Theorem 2.6. We use this theorem to infer that

∏
p≥P,

p+qZ∈A

F (1/ps)

H(1/ps)
=
∏
j≥∆

∏
m≥1

∏
K∈G

( ∏
χ∈K⊥

LP (mjs, χ)

)CA (K,m,1−X)

m (bH(j)−bF (j))

.

Notice that we have sH(j)− sF (j) = 0 (and hence bH(j)− bF (j) = 0) when j < ∆
by our assumption on ∆. Let us glue the variables m and j in n. On using the
definitions (2.1) and (3.2), we see that the functions m 7→ CA (K,m, 1−X)/m and
j 7→ (bH(j)− bF (j)) are of the form (11?r)(m)/m, respectively (µ? (sH −sF ))(j)/j.
Hence

n
∑
jm=n

CA (K,m, 1−X)

m
(bH(j)− bF (j)) =

∑
td=n

r(t)
(
sH(d)− sF (d)

)
.

We replace r(t) by its value to conclude that this sum is CA (K,m,F/H), as defined
by (1.4). We have reached

(3.7)
∏
p≥P,

p+qZ∈A

F (1/ps)

H(1/ps)
=
∏
n≥∆

∏
K∈G

( ∏
χ∈K⊥

LP (ns, χ)

)CA (K,n,F/H)

n

.



FAST MULTI-PRECISION COMPUTATION OF SOME EULER PRODUCTS 13

The final task is to control the tail of this product, but prior to that, we change the
variable n in (3.7) in m again. To control the tail, we check that, by Lemma 2.5,

± log
∏

m≥M+1

∏
K∈G

( ∏
χ∈K⊥

LP (ms, χ)

)CA (K,m,F/H)

m

≤
∑

m≥M+1

∑
K∈G

|CA (K,m,F/H)|
m

|G/K|ms− 1 + P

Pms

≤
∑

m≥M+1

∑
K∈G

∑
t|m

µ2(t)|G |(degF + degH)βm/t
ms− 1 + P

mPms

≤ (degF + degH)|G |2
∑

m≥M+1

βm

1− (1/β)

s+ P

Pms

≤ (degF + degH)|G |2 β(s+ P )

β − 1

1

1− (β/P s)

(
β

P s

)M+1

≤ 4(degF + degH)|G |2(s+ P )

(
β

P s

)M+1

.

�

4. Link with two other sets of inequalities

In this section, we develop some elements that are contiguous to our topic.

A formula.

Lemma 4.1. Let q > 1 be a modulus. We set G0 to be a subgroup of G = (Z/qZ)×

and G⊥0 be the subgroup of characters that take the value 1 on G0. For any integer b,
we define 〈b〉 to be the subgroup generated by b modulo q. We have∏

χ∈G⊥0

LP (s, χ) =
∏

G0⊂K⊂G

∏
p≥P,

〈p〉G0=K

(
1− p−|K/G0|s

)−|G/K|
.

The right-hand side of this formula contains products of the kind we seek and, if
we were to start from such a set of formulas, the problem would be to invert them
in some sense.

Proof. We note that
∏
χ∈G⊥0

(1− χ(p)z)χ(a) =
∏
ψ∈L̂(1− ψ(p)z)f(ψ) when 〈p〉 = L

and where

(4.1) f(ψ) =
∑
χ∈G⊥0 ,
χ|L=ψ

χ(a).

The condition χ ∈ G⊥0 can also be written as χ|G0 = 1, hence we can assume that
ψ|(L ∩G0) = 1. We write∏

χ∈G⊥0

(1− χ(p)z)χ(a) =
∏

ψ′∈L̂G0,
ψ′|G0=1

(1− ψ(p)z)f
′(ψ′),
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where

(4.2) f ′(ψ′) =
∑
χ∈G⊥0 ,
χ|LG0=ψ

χ(a).

When a lies outside LG0, this sum vanishes; otherwise it equals |G/(LG0)|ψ′(a).
The characters of LG0 that are trivial on G0 are canonically identified with the
characters of the cyclic group (LG0)/G0. We thus have∏

ψ′∈L̂G0,
ψ′|G0=1

(1− ψ(p)z) = 1− z|(LG0)/G0|,

and this proves our formula. �

Notes on the scope of Lemma 4.1. From a metholodogical viewpoint, a mo-
ment’s thought discloses that two residue classes modulo q that fall inside the same
lattice-invariant class cannot be distinguished by the set of identities of Lemma 4.1.
This implies that we indeed extract the maximum information from our setting.
This could be formalized in the following manner: consider the vector space F [G]
of functions from G to C, and the sub-space generated by (11G0

)G0∈G . This sub-
space is clearly included in the subspace generated by (11A)A∈G] . These two spaces
can be shown to be equal. We end this discussion here, as we do not need this fact.

Link with abelian field theory. The case G0 = {1} in the identity of Lemma 4.1
is classical in Dedekind zeta function theory for the fieldQ(ζq), where ζq = exp(2iπ/q),
and can be found in [13, Proposition 13] in a rephrased form. For the general case,
we follow [11, Chapter 8] by Narkiewicz. The Dedekind zeta-function associated
with an abelian field K is given by

(4.3) ζK(s) =
∏

χ∈X(K)

L(s, χ)

as per [11, Theorem 8.6]. The group X(K) is the group of characters attached
to K, see [11, Proposition 8.4]. This equality (4.3) is proved prime per prime, and
we can restrict to ideals whose norm is prime to some integer. In particular, we can
restrict it to the primes that are prime to q, which excludes at least the ramified
primes. Let Hq(K) be the subgroup of the integers r mod q that are such that
the automorphism of Q(ζq) defined by ζq 7→ ζrq is the identity on K. The sets

X(K) and Hq(K)⊥ are almost equal: X(K) is made only of primitive characters
associated to the characters in Hq(K)⊥. We may select G0 = Hq(K) in Lemma 4.1.
Some work involving the decomposition law in abelian number fields, which may
for instance be found in [11, Theorem 8.2], gives us, when the prime factors of q
are all at most P , that∏

χ∈X(K)

LP (s, χ) =
∏

Hq(K)⊂K⊂Gq

∏
p≥P,

〈p〉Hq(K)=K

(
1− p−|K/Hq(K)|s

)−|Gq/K|
.

The proof we provide of Lemma 4.1 is much simpler, but the above analysis estab-
lishes that the identities stemming from both approaches are the same.
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5. Timing and implementation notes

Let s > 1 be a real number and P ≥ 2 be a parameter. We consider the vector,
for any positive integer t:

(5.1) ΓP,s(t) =
(

log
∏
χ∈G⊥0

LP (ts, χ)
)
G0∈G

.

The rows of ΓP,s(t) are indexed by the cyclic subgroups of G. An approximate
value of this vector is provided by the function GetGamma of the script LIEP.sage

from the values of the Hurwitz zeta function. We next define

(5.2) Vs(t) =
(
log ζP (ts; q,A)

)
A∈G] .

The rows of Vs(t) are indexed by classes. We also define

(5.3) ΓP,s(t) =
(

log
∏

χ∈K⊥
LP (ts, χ)

)
K∈G

.

The function GetLatticeInvariantClasses of the script LIEP.sage gives the two
lists: the one of the cyclic subgroups and the one of their generators, ordered
similarly and in increasing size of the subgroups.

The algorithm (function GetVs):

Input. Input the four parameters q, s, nbdecimals and bigP as well as the two
parameters that control the output Verbose and WithLaTeX.

Precomputation-1. Compute and store the algebraic quantities that we need:
the tuple of cyclic subgroups of G = (Z/qZ)×, the tuple of its lattice-invariant
classes, the exponent of G, its character group, an enumeration of the elements
of G and, for each cyclic subgroup of G, the set of characters of G that are
trivial on it. This is done by the function GetStructure.

Initialization. Find M so that the right-hand side of (1.6) is less than 10−nbdecimals−10.

Precomputation-2. Build the set M of integers m such that m ≤M and all the
prime factors of m divide q. Then compute the constants (CA (K,m, 1−X))
for every possible class A and every m in M .

Main Loop. For m ∈M , add the contribution of this index to the sum approx-
imating Vs(1) from the right-hand side of (1.5) with P = bigP.

Post-computation. Complete the products with the values for primes p < bigP.

Output. Return the tuple of lattice-invariant classes and the tuple of couples of
lower/upper bounds for the wanted Euler products.

Once the script is loaded via load(’LIEP.sage’), a typical call will be

GetVs(12, 2, 100, 110)

to compute modulo 12 the possible constants with s = 2, asking for 100 decimal
digits and using P = 110. The output is self explanatory. The number of decimal
digits asked for is roughly handled and one may lose precision in between, but this
is indicated at the end. Note that we expect the final result to be of size roughly
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unity, so what we ask for is not the relative precision but the number of decimals.
Hence, in the function GetGamma, we replace by an approximation of 0 the values
that we know are insignificantly small. This is a true time-saver.

There are two subsequent optional parameters Verbose and WithLaTeX. The
first one may take the values 0, 1 and 2; when equal to 0, the function will simply
do its job and return the tuple of the invariant classes and the one of the computed
lower and upper values. When equal to 1, the time taken will also be printed. And
when equal to 2, its default value, some information on the computation is given.
When the parameter Verbose is at least 2 and WithLaTeX is 1, the values of the
constants will be further presented in a format suitable for inclusion in a LATEX-file.
The digits presented in LATEX-format when WithLaTeX = 1 are always accurate.
For instance, the call GetVs(12, 2, 100, 100, 2, 1) is the one used to prepare
the addendum [2] in which we give the first hundred decimal digits of every Euler
product over a lattice invariant class when the modulus is at most 16.

The computations of the Euler products of Theorem 1.2 (with P = 2, the pa-
rameter bigP being used to decide from which point onwards we use the usual Euler
product or the expression of the theorem) is implemented in:
GetEulerProds(q, s, F, H, nbdecimals, bigP = 100, Verbose = 2, WithLaTeX = 0).
The parameter bigP may be increased by the script to ensure that P ≥ 2β (a
condition that is usually satisfied). We reused the same structure as the one for
the function GetVs except that the set of indices m is now a full interval. Since the
coefficients |bF (j)− bG(j)| may increase like βj , we increase the working precision
by J log β/ log 2.

Checking. The values given here have been checked in several ways. The co-
authors of this paper have run several independent scripts. We also provide the
function GetVsChecker(q, s, borne = 10000) which computes approximate val-
ues of the same Euler products by simply truncating the Euler product represen-
tation. We checked with positive result the stability of our results with respect of
the variation of the parameter P . This proved to be a very discriminating test.

Furthermore, approximate values for Shanks’ and Lal’s constants are known
(Finch in [4] gives 10 digits) and we agree with those. Finally, the web site [7] by
X. Gourdon and P. Sebah, or the attached postscript file on the same page, gives
in section 4.4 the first fifty digits of the constant they call A and which are

π2

2

∏
p≡1[4]

(
1− 4

p

)(
p+ 1

p− 1

)2

= 1.95049 11124 46287 07444 65855 65809 55369

25267 08497 71894 30550 80726 33188 94627

61381 60369 39924 26646 98594 38665 · · ·

Our result matches that of [7].

Some observations on the running time and complexity. We tried several
large computations to get an idea of the limitations of our script with the choice
s = 2 in Corollary 1.8. We present five tables:

• A first table for 3 ≤ q ≤ 100 with the uniform choice P = 100 and asking
for 100 decimal digits.
• Three further tables obtained with the choice P = 200 and asking for a

thousand decimal digits. The cases retained are q ≤ 16, 91 ≤ q ≤ 100 and
200 ≤ q ≤ 220. This last interval contains the first integer q such that
r = ω(ϕ(q)) = 4, namely q = 211.
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• And finally a table for q ∈ {3, 5} and asking for 5000 decimal digits. The
running time is given with different choices of the parameter P .

Since we did not run each computation hundred times to get an average timing,
these tables have to be taken with a pinch of salt. The processor was an Intel Core
i5-2500 at 3.30 GHz. The first half of Table 1 may be reproduced with the call:

TablePerformance(3, 51, 100, 100)

In these tables, r = ω(ϕ(q)) is the number of distinct prime divisors of q as in
Corollary 1.8. The time is given in tenth of a second, indicated by “s/10”. The
column with the tag “#m′s” contains the number of indices m ≤ M such that
m|ϕ(q)∞. We otherwise follow the notation of Theorem 1.2.

It seems likely, when looking at Tables 1, 2, 3 and 4 that the number of values
of the Hurwitz zeta-function to be computed is the main determining factor of the
time consumption. This number is controlled by ϕ(q), since this is the number
of characters, and by the number of m’s required, a value that is on the whole
controlled by r = ω(ϕ(q))

Table 5 gives some data about the running time when asking for 5000 decimal
digits, which essentially sets the horizon of the present method. The time is counted
in minutes.

References

1. H. Cohen, High precision computations of Hardy-Littlewood constants, preprint (1996), 1–19.
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q ϕ(q) r #m′s |G]| M
time

s/10
3 2 1 5 2 26 51
4 2 1 5 2 26 1

5 4 1 5 3 26 2
7 6 2 11 4 26 3
8 4 1 5 4 26 1

9 6 2 11 4 26 3
11 10 2 9 4 26 4
12 4 1 5 4 26 1

13 12 2 11 6 26 6
15 8 1 5 6 26 2
16 8 1 5 6 26 2

17 16 1 5 5 26 4
19 18 2 11 6 26 9
20 8 1 5 6 26 2
21 12 2 11 8 26 6
23 22 2 7 4 26 7

24 8 1 5 8 26 2
25 20 2 9 6 26 8
27 18 2 11 6 26 9

28 12 2 11 8 26 6
29 28 2 7 6 26 9
31 30 3 16 8 26 22

32 16 1 5 8 26 4
33 20 2 9 8 26 9
35 24 2 11 12 26 13

36 12 2 11 8 26 6
37 36 2 11 9 26 19

39 24 2 11 12 26 13

40 16 1 5 12 26 5
41 40 2 9 8 26 17

43 42 3 14 8 26 28

44 20 2 9 8 26 8
45 24 2 11 12 26 12

47 46 2 6 4 26 14

48 16 1 5 12 26 5
49 42 3 14 8 26 29

51 32 1 5 10 26 9

q ϕ(q) r #m′s |G]| M
time

s/10
52 24 2 11 12 26 13
53 52 2 6 6 26 17

55 40 2 9 12 26 19
56 24 2 11 16 26 14
57 36 2 11 12 26 20

59 58 2 5 4 26 17
60 16 1 5 12 26 5
61 60 3 16 12 26 52

63 36 2 11 20 26 22
64 32 1 5 10 26 9
65 48 2 11 20 26 30

67 66 3 13 8 26 47
68 32 1 5 10 26 10
69 44 2 7 8 26 17
71 70 3 11 8 26 44
72 24 2 11 16 26 14

73 72 2 11 12 26 47
75 40 2 9 12 26 19
76 36 2 11 12 26 20

77 60 3 16 16 26 53
79 78 3 12 8 26 53
80 32 1 5 20 26 11

81 54 2 11 8 26 31
83 82 2 5 4 26 25
84 24 2 11 16 26 14

85 64 1 5 18 26 25
87 56 2 7 12 26 24

88 40 2 9 16 26 21

89 88 2 7 8 26 40
91 72 2 11 30 26 54

92 44 2 7 8 26 16

93 60 3 16 16 26 54
95 72 2 11 18 26 50

96 32 1 5 16 26 10

97 96 2 11 12 26 70
99 60 3 16 16 26 52

100 40 2 9 12 26 19

Table 1. Time used when asking for 100 digits
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q ϕ(q) r #m′s |G]| M Time (s/10)
3 2 1 8 2 218 10
4 2 1 8 2 218 7
5 4 1 8 3 218 14
7 6 2 26 4 218 69
8 4 1 8 4 218 12
9 6 2 26 4 218 67

11 10 2 19 4 218 81
12 4 1 8 4 218 14
13 12 2 26 6 218 135
15 8 1 8 6 218 26
16 8 1 8 6 218 24

Table 2. Time used when asking for 1000 digits for q ≤ 16

q ϕ(q) r #m′s |G]| M Time (s/10)
91 72 2 26 30 219 910
92 44 2 14 8 218 286
93 60 3 47 16 219 1388
95 72 2 26 18 218 912
96 32 1 8 16 218 114
97 96 2 26 12 218 1257
99 60 3 47 16 219 1399

100 40 2 19 12 218 363

Table 3. Time used when asking for 1000 digits for 90 < q ≤ 100

q ϕ(q) r #m′s |G]| M Time (s/10)
200 80 2 19 24 218 759
201 132 3 37 16 218 2543
203 168 3 42 24 219 3767
204 64 1 8 20 218 240
205 160 2 19 28 219 1573
207 132 3 37 16 218 2520
208 96 2 26 40 219 1259
209 180 3 47 24 219 4552
211 210 4 69 16 219 8406
212 104 2 14 12 218 743
213 140 3 31 16 218 2271
215 168 3 42 24 219 3807
216 72 2 26 24 219 930
217 180 3 47 40 219 4517
219 144 2 26 24 219 1970
220 80 2 19 24 218 753

Table 4. Time used when asking for 1000 digits for 200 ≤ q ≤ 220



20 S. ETTAHRI, O. RAMARÉ, AND L. SUREL

q P time
3 200 80m
3 400 35m
3 500 35m
5 500 72m
5 1000 70m
5 5000 72m

Table 5. Time used when asking for 5000 digits


