Quantitative localization and comparison of invariant distances of domains in $\mathbb C^n$ - Archive ouverte HAL
Article Dans Une Revue The Journal of Geometric Analysis Année : 2022

Quantitative localization and comparison of invariant distances of domains in $\mathbb C^n$

Résumé

We obtain explicit bounds on the difference and ratio between "local" and "global" Kobayashi distances in a domain of $\mathbb C^n$ as the points go toward a boundary point with appropriate geometric properties. We use this for the global comparison of various invariant distances. We provide some sharp estimates in dimension $1$.

Dates et versions

hal-03377085 , version 1 (14-10-2021)

Identifiants

Citer

Nikolai Nikolov, Pascal Thomas. Quantitative localization and comparison of invariant distances of domains in $\mathbb C^n$. The Journal of Geometric Analysis, 2022, 33 (1), pp.35. ⟨10.1007/s12220-022-01086-9⟩. ⟨hal-03377085⟩
52 Consultations
0 Téléchargements

Altmetric

Partager

More