Codimension 1 foliations with numerically trivial canonical class on singular spaces - Archive ouverte HAL Access content directly
Journal Articles Duke Mathematical Journal Year : 2021

Codimension 1 foliations with numerically trivial canonical class on singular spaces

Abstract

In this article, we describe the structure of codimension one foliations with canonical singularities and numerically trivial canonical class on varieties with terminal singularities, extending a result of Loray, Pereira and Touzet to this context. Contents 1. Introduction 1 2. Notation, conventions, and used facts 4 3. Foliations 7 4. Singularities of foliations 10 5. Weakly regular foliations on singular spaces 17 6. Weakly regular foliations with algebraic leaves 25 7. Quasi-étale trivializable reflexive sheaves 28 8. A global Reeb stability theorem 30 9. Algebraic integrability, I 36 10. Algebraic integrability, II 40 11. Foliations defined by closed rational 1-forms 44 12. Proofs of Theorems 1.1 and 1.3 and proof of Corollary 1.4 51 References 55
Fichier principal
Vignette du fichier
grst.pdf (807.83 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-03374138 , version 1 (11-10-2021)

Identifiers

Cite

Stéphane Druel. Codimension 1 foliations with numerically trivial canonical class on singular spaces. Duke Mathematical Journal, 2021, 170 (1), ⟨10.1215/00127094-2020-0041⟩. ⟨hal-03374138⟩
16 View
91 Download

Altmetric

Share

Gmail Facebook X LinkedIn More