A scaling procedure for straightforward computation of sorptivity - Archive ouverte HAL
Article Dans Une Revue Hydrology and Earth System Sciences Année : 2021

A scaling procedure for straightforward computation of sorptivity

Pierre-Emmanuel Peyneau
Deniz Yilmaz

Résumé

Sorptivity is a parameter of primary importance in the study of unsaturated flow in soils. This hydraulic parameter is required to model water infiltration into vertical soil profiles. Sorptivity can be directly estimated from the soil hydraulic functions (water retention and hydraulic conductivity curves), using the integral formulation of Parlange (1975). However, calculating sorptivity in this manner requires the prior determination of the soil hydraulic diffusivity and its numerical integration between initial and final saturation degrees, which may be difficult in some situations (e.g., coarse soil with diffusivity functions that are quasi-infinite close to saturation). In this paper, we present a procedure to compute sorptivity using a scaling parameter, cp, that corresponds to the sorptivity of a unit soil (i.e., unit values for all parameters and zero residual water content) that is utterly dry at the initial state and saturated at the final state. The cp parameter was computed numerically and analytically for five hydraulic models: delta (i.e., Green and Ampt), Brooks and Corey, van Genuchten–Mualem, van Genuchten–Burdine, and Kosugi. Based on the results, we proposed brand new analytical expressions for some of the models and validated previous formulations for the other models. We also tabulated the output values so that they can easily be used to determine the actual sorptivity value for any case. At the same time, our numerical results showed that the relation between cp and the hydraulic shape parameters strongly depends on the chosen model. These results highlight the need for careful selection of the proper model for the description of the water retention and hydraulic conductivity functions when estimating sorptivity.
Fichier principal
Vignette du fichier
hess-25-5083-2021.pdf (1.42 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03370546 , version 1 (19-10-2021)

Licence

Identifiants

Citer

Laurent Lassabatere, Pierre-Emmanuel Peyneau, Deniz Yilmaz, Joseph Pollacco, Jesús Fernández-Gálvez, et al.. A scaling procedure for straightforward computation of sorptivity. Hydrology and Earth System Sciences, 2021, 25 (9), pp.5083-5104. ⟨10.5194/hess-25-5083-2021⟩. ⟨hal-03370546⟩
131 Consultations
67 Téléchargements

Altmetric

Partager

More