PageRank computation for Higher-Order Networks - Archive ouverte HAL
Communication Dans Un Congrès Année : 2021

PageRank computation for Higher-Order Networks

Résumé

Higher-order networks are efficient representations of sequential data. Unlike the classic first-order network approach, they capture indirect dependencies between items composing the input sequences by the use of memory-nodes. We focus in this study on the variable-order network model introduced by Saebi et al. (2020). Authors suggested that random walk-based mining tools can be directly applied to these networks. We discuss the case of the PageRank measure. We show the existence of a bias due to the distribution of the number of representations of the items. We propose an adaptation of the PageRank model in order to correct it. Application on real-world data shows important differences in the achieved rankings.
Fichier principal
Vignette du fichier
PageRankHon2021.pdf (1.73 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03369197 , version 1 (15-10-2021)
hal-03369197 , version 2 (03-11-2021)

Identifiants

  • HAL Id : hal-03369197 , version 2

Citer

Célestin Coquidé, Julie Queiros, François Queyroi. PageRank computation for Higher-Order Networks. Complex Networks 2021, Nov 2021, Madrid, Spain. ⟨hal-03369197v2⟩
108 Consultations
79 Téléchargements

Partager

More