Rank Change and Growth Within Social Hierarchies of the Orange Clownfish, Amphiprion Percula
Résumé
Abstract Social hierarchies within groups define the distribution of resources and provide benefits that support the collective group or favor dominant members. The progression of individuals through social hierarchies is a valuable characteristic for quantifying population dynamics. On coral reefs, a number of small site-attached fish maintain size-based hierarchical communities where individuals queue through social ranks. The cost of waiting in a lower-ranked position is outweighed by the reduced risk of eviction and mortality. Clownfish exist in stable social groups with subordinate individuals queuing to be part of the dominant breeding pair. Site attachment to their host anemone, complex social interactions, and relatively low predation rates make them ideal model organisms to assess changes in group dynamics through time in their natural environment. Here, we investigate the rank changes, and isometric growth rates of individual orange clownfish, Amphiprion percula , from 247 naturally occurring social groups in Kimbe Island, Papua New Guinea (5°12’13.54” S, 150°22’32.69” E). We use DNA profiling to assign and track individuals over an eight-year time period in 2011 and 2019. Over half of the individuals survived alongside two or three members of their original social group, with twelve breeding pairs persisting over the study period. Half of the surviving individuals increased in rank and experienced double the growth rate of those that maintained their rank. Examining rank change over a long-term period in a wild fish population gives new insights and highlights the complexity and importance of rank and social hierarchy in communal site-attached reef fish. Subject Area : behavior, ecology, evolution