Optimal prediction with resource constraints using the information bottleneck - Archive ouverte HAL
Article Dans Une Revue PLoS Computational Biology Année : 2021

Optimal prediction with resource constraints using the information bottleneck

Résumé

Responding to stimuli requires that organisms encode information about the external world. Not all parts of the input are important for behavior, and resource limitations demand that signals be compressed. Prediction of the future input is widely beneficial in many biological systems. We compute the trade-offs between representing the past faithfully and predicting the future using the information bottleneck approach, for input dynamics with different levels of complexity. For motion prediction, we show that, depending on the parameters in the input dynamics, velocity or position information is more useful for accurate prediction. We show which motion representations are easiest to re-use for accurate prediction in other motion contexts, and identify and quantify those with the highest transferability. For non-Markovian dynamics, we explore the role of long-term memory in shaping the internal representation. Lastly, we show that prediction in evolutionary population dynamics is linked to clustering allele frequencies into non-overlapping memories.
Fichier principal
Vignette du fichier
SachdevaMora21.pdf (3.49 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03367851 , version 1 (05-11-2020)
hal-03367851 , version 2 (07-10-2021)

Licence

Identifiants

Citer

Vedant Sachdeva, Thierry Mora, Aleksandra Walczak, Stephanie Palmer. Optimal prediction with resource constraints using the information bottleneck. PLoS Computational Biology, 2021, 17 (3), pp.e1008743. ⟨10.1371/journal.pcbi.1008743⟩. ⟨hal-03367851v2⟩
130 Consultations
69 Téléchargements

Altmetric

Partager

More