Single molecule microscopy reveals key physical features of repair foci in living cells - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2020

Single molecule microscopy reveals key physical features of repair foci in living cells

Judith Miné-Hattab
Mathias Heltberg
  • Fonction : Auteur
Marie Villemeur
  • Fonction : Auteur
Chloé Guedj
  • Fonction : Auteur
Thierry Mora
Maxime Dahan
  • Fonction : Auteur
Angela Taddei

Résumé

In response to double strand breaks (DSB), repair proteins accumulate at damaged sites, forming membrane-less sub-compartments or foci. Here we explored the physical nature of these foci, using single molecule microscopy in living cells. Rad52, the functional homolog of BRCA2 in yeast, accumulates at DSB sites and diffuses ~6 times faster within repair foci than the focus itself, exhibiting confined motion. The Rad52 confinement radius coincides with the focus size: foci resulting from 2 DSBs are twice larger in volume that the ones induced by a unique DSB and the Rad52 confinement radius scales accordingly. In contrast, molecules of the single strand binding protein Rfa1 follow anomalous diffusion similar to the focus itself or damaged chromatin. We conclude that while most Rfa1 molecules are bound to the ssDNA, Rad52 molecules are free to explore the entire focus possibly reflecting the existence of a liquid droplet around damaged DNA.
In response to double strand breaks (DSB), repair proteins accumulate at damaged sites, forming membrane-less sub-compartments or foci. Here we explored the physical nature of these foci, using single molecule microscopy in living cells. Rad52, the functional homolog of BRCA2 in yeast, accumulates at DSB sites and diffuses ~6 times faster within repair foci than the focus itself, exhibiting confined motion. The Rad52 confinement radius coincides with the focus size: foci resulting from 2 DSBs are twice larger in volume that the ones induced by a unique DSB and the Rad52 confinement radius scales accordingly. In contrast, molecules of the single strand binding protein Rfa1 follow anomalous diffusion similar to the focus itself or damaged chromatin. We conclude that while most Rfa1 molecules are bound to the ssDNA, Rad52 molecules are free to explore the entire focus possibly reflecting the existence of a liquid droplet around damaged DNA.
Fichier principal
Vignette du fichier
2020.06.18.160085v1.full.pdf (1.82 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-03367836 , version 1 (05-11-2020)
hal-03367836 , version 2 (07-10-2021)

Identifiants

Citer

Judith Miné-Hattab, Mathias Heltberg, Marie Villemeur, Chloé Guedj, Thierry Mora, et al.. Single molecule microscopy reveals key physical features of repair foci in living cells. 2020. ⟨hal-03367836v1⟩
114 Consultations
133 Téléchargements

Altmetric

Partager

More