Kink networks for scalar fields in dimension 1+1 - Archive ouverte HAL
Article Dans Une Revue Nonlinear Analysis Année : 2022

Kink networks for scalar fields in dimension 1+1

Résumé

We consider a scalar field equation in dimension $1+1$ with a positive external potential having non-degenerate isolated zeros. We construct weakly interacting pure multi-solitons, that is solutions converging exponentially in time to a superposition of Lorentz-transformed kinks, in the case of distinct velocities. We find that these solutions form a $2K$-dimensional smooth manifold in the space of solutions, where $K$ is the number of the kinks. We prove that this manifold is invariant under the transformations corresponding to the invariances of the equation, that is space-time translations and Lorentz boosts.
Fichier principal
Vignette du fichier
S0362546X2100242X.pdf (461.73 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03365781 , version 1 (05-01-2024)

Licence

Identifiants

Citer

Gong Chen, Jacek Jendrej. Kink networks for scalar fields in dimension 1+1. Nonlinear Analysis, 2022, 215, ⟨10.1016/j.na.2021.112643⟩. ⟨hal-03365781⟩
68 Consultations
14 Téléchargements

Altmetric

Partager

More