Soliton resolution for energy-critical wave maps in the equivariant case - Archive ouverte HAL
Article Dans Une Revue J. Amer. Math. Soc. Année : 2022

Soliton resolution for energy-critical wave maps in the equivariant case

Résumé

We consider the equivariant wave maps equation $\mathbb{R}^{1+2} \to \mathbb{S}^2$, in all equivariance classes $k \in \mathbb{N}$. We prove that every finite energy solution resolves, continuously in time, into a superposition of asymptotically decoupling harmonic maps and free radiation.

Dates et versions

hal-03365769 , version 1 (05-10-2021)

Identifiants

Citer

Jacek Jendrej, Andrew Lawrie. Soliton resolution for energy-critical wave maps in the equivariant case. J. Amer. Math. Soc., In press. ⟨hal-03365769⟩
65 Consultations
0 Téléchargements

Altmetric

Partager

More