Anomalous Cluster Detection in Large Networks with Diffusion-Percolation Testing - Archive ouverte HAL
Proceedings/Recueil Des Communications Année : 2021

Anomalous Cluster Detection in Large Networks with Diffusion-Percolation Testing

Résumé

We propose a computationally efficient procedure for elevated mean detection on a connected subgraph of a network with node-related scalar observations. Our approach relies on two intuitions: first, a significant concentration of high observations in a connected subgraph implies that the subgraph induced by the nodes associated with the highest observations has a large connected component. Secondly, a greater detection power can be obtained in certain cases by denoising the observations using the network structure. Numerical experiments show that our procedure's detection performance and computational efficiency are both competitive.
Fichier principal
Vignette du fichier
ES2021-32.pdf (1.64 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03363228 , version 1 (03-10-2021)

Identifiants

  • HAL Id : hal-03363228 , version 1

Citer

Corentin Larroche, Johan Mazel, Stephan Clémençon. Anomalous Cluster Detection in Large Networks with Diffusion-Percolation Testing. ESANN 2021 : European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning., pp.1-6, 2021. ⟨hal-03363228⟩
145 Consultations
69 Téléchargements

Partager

More