Pi01-encodability and omniscient reductions - Archive ouverte HAL
Article Dans Une Revue Notre Dame Journal of Formal Logic Année : 2019

Pi01-encodability and omniscient reductions

Résumé

A set of integers $A$ is computably encodable if every infinite set of integers has an infinite subset computing $A$. By a result of Solovay, the computably encodable sets are exactly the hyperarithmetic ones. In this paper, we extend this notion of computable encodability to subsets of the Baire space and we characterize the $\Pi^0_1$ encodable compact sets as those who admit a non-empty $\Sigma^1_1$ subset. Thanks to this equivalence, we prove that weak weak K\"onig's lemma is not strongly computably reducible to Ramsey's theorem. This answers a question of Hirschfeldt and Jockusch.
Fichier principal
Vignette du fichier
pi01-encodability.pdf (290.71 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03362579 , version 1 (01-10-2021)

Identifiants

Citer

Benoit Monin, Ludovic Patey. Pi01-encodability and omniscient reductions. Notre Dame Journal of Formal Logic, 2019, 60 (1), pp.1--12. ⟨10.1215/00294527-2018-0020⟩. ⟨hal-03362579⟩
23 Consultations
53 Téléchargements

Altmetric

Partager

More