FLUCTUATIONS OF THE STIELTJES TRANSFORM OF THE EMPIRICAL SPECTRAL DISTRIBUTION OF SELFADJOINT POLYNOMIALS IN WIGNER AND DETERMINISTIC DIAGONAL MATRICES
Résumé
We investigate the fluctuations around the mean of the Stieltjes transform of the empirical spectral distribution of any selfadjoint noncommutative polynomial in a Wigner matrix and a deterministic diagonal matrix. We obtain the convergence in distribution to a centred complex Gaussian process whose covariance is expressed in terms of operator-valued subordination functions.
Domaines
Probabilités [math.PR]Origine | Fichiers produits par l'(les) auteur(s) |
---|