Hyperparameter selection for Discrete Mumford-Shah - Archive ouverte HAL
Article Dans Une Revue Signal, Image and Video Processing Année : 2022

Hyperparameter selection for Discrete Mumford-Shah

Résumé

This work focuses on a parameter-free joint piecewise smooth image denoising and contour detection. Formulated as the minimization of a discrete Mumford-Shah functional and estimated via a theoretically grounded alternating minimization scheme, the bottleneck of such a variational approach lies in the need to fine-tune their hyperparameters, while not having access to ground truth data. To that aim, a Stein-like strategy providing optimal hyperparameters is designed, based on the minimization of an unbiased estimate of the quadratic risk. Efficient and automated minimization of the estimate of the risk crucially relies on an unbiased estimate of the gradient of the risk with respect to hyperparameters. Its practical implementation is performed using a forward differentiation of the alternating scheme minimizing the Mumford-Shah functional, requiring exact differentiation of the proximity operators involved. Intensive numerical experiments are performed on synthetic images with different geometry and noise levels, assessing the accuracy and the robustness of the proposed procedure. The resulting parameter-free piecewise-smooth estimation and contour detection procedure, not requiring prior image processing expertise nor annotated data, can then be applied to real-world images.
Fichier principal
Vignette du fichier
ms.pdf (2.89 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03356059 , version 1 (27-09-2021)
hal-03356059 , version 2 (23-01-2023)

Identifiants

Citer

Charles-Gérard Lucas, Barbara Pascal, Nelly Pustelnik, Patrice Abry. Hyperparameter selection for Discrete Mumford-Shah. Signal, Image and Video Processing, 2022, ⟨10.1007/s11760-022-02401-1⟩. ⟨hal-03356059v2⟩
71 Consultations
122 Téléchargements

Altmetric

Partager

More