Evaluating X-vector-based Speaker Anonymization under White-box Assessment - Archive ouverte HAL
Communication Dans Un Congrès Année : 2021

Evaluating X-vector-based Speaker Anonymization under White-box Assessment

Résumé

In the scenario of the Voice Privacy challenge, anonymization is achieved by converting all utterances from a source speaker to match the same target identity; this identity being randomly selected. In this context, an attacker with maximum knowledge about the anonymization system can not infer the target identity. This article proposed to constrain the target selection to a specific identity, i.e., removing the random selection of identity, to evaluate the extreme threat under a whitebox assessment (the attacker has complete knowledge about the system). Targeting a unique identity also allows us to investigate whether some target's identities are better than others to anonymize a given speaker.
Fichier principal
Vignette du fichier
main.pdf (3 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03351943 , version 1 (23-09-2021)
hal-03351943 , version 2 (28-09-2021)
hal-03351943 , version 3 (29-09-2021)

Identifiants

Citer

Pierre Champion, Denis Jouvet, Anthony Larcher. Evaluating X-vector-based Speaker Anonymization under White-box Assessment. SPECOM 2021 - 23rd International Conference on Speech and Computer, Sep 2021, Saint Petersburg, Russia. ⟨hal-03351943v3⟩
197 Consultations
248 Téléchargements

Altmetric

Partager

More