Stabilization of the Wave Equation by the Mean of a Saturating Dirichlet Feedback - Archive ouverte HAL
Communication Dans Un Congrès Année : 2021

Stabilization of the Wave Equation by the Mean of a Saturating Dirichlet Feedback

Résumé

In this paper, we consider the wave equation with Dirichlet boundary control subject to a nonlinearity, the kind of which includes (but is not restricted to) pointwise saturation mappings. The case where only a subset of the boundary is actuated is allowed. Initial data is taken in the optimal energy space associated with Dirichlet boundary control-which means that we deal with (very) weak solutions. Using nonlinear semigroup techniques, we prove that the associated closed-loop system is asymptotically stable. Some numerical simulations are given to illustrate the stability result.
Fichier principal
Vignette du fichier
micnon21-revised.pdf (399.67 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03349953 , version 1 (21-09-2021)

Identifiants

Citer

Nicolas Vanspranghe, Francesco Ferrante, Christophe Prieur. Stabilization of the Wave Equation by the Mean of a Saturating Dirichlet Feedback. MICNON 2021 - Third IFAC Conference on Modelling, Identification and Control of Nonlinear Systems, Sep 2021, Tokyo, Japan. ⟨10.1016/j.ifacol.2021.10.394⟩. ⟨hal-03349953⟩
126 Consultations
168 Téléchargements

Altmetric

Partager

More