Velocity Stabilization of a Wave Equation with a Nonlinear Dynamic Boundary Condition - Archive ouverte HAL
Article Dans Une Revue IEEE Transactions on Automatic Control Année : 2022

Velocity Stabilization of a Wave Equation with a Nonlinear Dynamic Boundary Condition

Résumé

This paper deals with a one-dimensional wave equation with a nonlinear dynamic boundary condition and a Neumann-type boundary control acting on the other extremity. We consider a class of nonlinear stabilizing feedbacks that only depend on the velocity at the controlled extremity. The uncontrolled boundary is subject to a nonlinear first-order term, which may represent nonlinear boundary anti-damping. Initial data is taken in the optimal energy space associated with the problem. Exponential decay of the mechanical energy is investigated in different cases. Stability and attractivity of suitable invariant sets are established.
Fichier principal
Vignette du fichier
IEEE-TAC-21-0027-final.pdf (198.46 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03349947 , version 1 (21-09-2021)
hal-03349947 , version 2 (29-08-2022)

Identifiants

Citer

Nicolas Vanspranghe, Francesco Ferrante, Christophe Prieur. Velocity Stabilization of a Wave Equation with a Nonlinear Dynamic Boundary Condition. IEEE Transactions on Automatic Control, 2022, 67 (12), pp.6786-6793. ⟨10.1109/TAC.2021.3136086⟩. ⟨hal-03349947v2⟩
152 Consultations
310 Téléchargements

Altmetric

Partager

More