Al–Ge–Al nanowire heterostructure: from single‐hole quantum dot to Josephson effect - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Advanced Materials Année : 2021

Al–Ge–Al nanowire heterostructure: from single‐hole quantum dot to Josephson effect

Résumé

Superconductor–semiconductor–superconductor heterostructures are attractive for both fundamental studies of quantum phenomena in low-dimensional hybrid systems as well as for future high-performance low power dissipating nanoelectronic and quantum devices. In this work, ultrascaled monolithic Al–Ge–Al nanowire heterostructures featuring monocrystalline Al leads and abrupt metal–semiconductor interfaces are used to probe the low-temperature transport in intrinsic Ge (i-Ge) quantum dots. In particular, demonstrating the ability to tune the Ge quantum dot device from completely insulating, through a single-hole-filling quantum dot regime, to a supercurrent regime, resembling a Josephson field effect transistor with a maximum critical current of 10 nA at a temperature of 390 mK. The realization of a Josephson field-effect transistor with high junction transparency provides a mechanism to study sub-gap transport mediated by Andreev states. The presented results reveal a promising intrinsic Ge-based architecture for hybrid superconductor–semiconductor devices for the study of Majorana zero modes and key components of quantum computing such as gatemons or gate tunable superconducting quantum interference devices.
Fichier principal
Vignette du fichier
Al-Ge-Al_JJ_article_final.pdf (1.14 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03348045 , version 1 (05-10-2021)

Identifiants

Citer

Jovian Delaforce, Masiar Sistani, R. B. G. Kramer, Minh Luong, Nicolas Roch, et al.. Al–Ge–Al nanowire heterostructure: from single‐hole quantum dot to Josephson effect. Advanced Materials, 2021, 33 (39), pp.2101989. ⟨10.1002/adma.202101989⟩. ⟨hal-03348045⟩
133 Consultations
156 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More