Towards Ontologically Explainable Classifiers - Archive ouverte HAL
Communication Dans Un Congrès Année : 2021

Towards Ontologically Explainable Classifiers

Résumé

In order to meet the explainability requirement of AI using Deep Learning (DL), this paper explores the contributions and feasibility of a process designed to create ontologically explainable classifiers while using domain ontologies. The approach is illustrated with the help of the Pizzas ontology that is used to create a synthetic image classifier that is able to provide visual explanations concerning a selection of ontological features. The approach is implemented by completing a DL model with ontological tensors that are generated from the ontology expressed in Description Logic
Fichier principal
Vignette du fichier
2021 [bourguin et al] Towards_Ontologically_Explainable_Classifiers__Final_.pdf (943.71 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03347493 , version 1 (21-09-2021)

Identifiants

Citer

Grégory Bourguin, Arnaud Lewandowski, Mourad Bouneffa, Adeel Ahmad. Towards Ontologically Explainable Classifiers. ICANN 2021 - 30th International conference on Artificial neural Networks, Sep 2021, Brastilava, Slovakia. pp.472-484, ⟨10.1007/978-3-030-86340-1_38⟩. ⟨hal-03347493⟩
83 Consultations
417 Téléchargements

Altmetric

Partager

More