A periodic homogenization problem with defects rare at infinity - Archive ouverte HAL
Article Dans Une Revue Networks and Heterogeneous Media Année : 2022

A periodic homogenization problem with defects rare at infinity

Résumé

We consider a homogenization problem for the diffusion equation $-\operatorname{div}\left(a_{\varepsilon} \nabla u_{\varepsilon} \right) = f$ when the coefficient $a_{\varepsilon}$ is a non-local perturbation of a periodic coefficient. The perturbation does not vanish but becomes rare at infinity in a sense made precise in the text. We prove the existence of a corrector, identify the homogenized limit and study the convergence rates of $u_{\varepsilon}$ to its homogenized limit.

Dates et versions

hal-03343281 , version 1 (14-09-2021)

Identifiants

Citer

Rémi Goudey. A periodic homogenization problem with defects rare at infinity. Networks and Heterogeneous Media, 2022, 17 (4), pp.547-592. ⟨10.3934/nhm.2022014⟩. ⟨hal-03343281⟩
100 Consultations
0 Téléchargements

Altmetric

Partager

More