A Simplified Benchmark for Non-ambiguous Explanations of Knowledge Graph Link Prediction using Relational Graph Convolutional Networks - Archive ouverte HAL
Poster De Conférence Année : 2021

A Simplified Benchmark for Non-ambiguous Explanations of Knowledge Graph Link Prediction using Relational Graph Convolutional Networks

Résumé

Relational Graph Convolutional Networks (RGCNs) identify relationships within a Knowledge Graph to learn real-valued embeddings for each node and edge. Recently, researchers have proposed explanation methods to interpret the predictions of these black-box models. However, comparisons across explanation methods is difficult without a common dataset and standard evaluation metrics to evaluate the explanations. In this paper, we propose a method, including two datasets (Royalty-20k and Royalty-30k), to benchmark explanation methods on the task of explainable link prediction using Graph Neural Networks. We report the results of state-of-the-art explanation methods for RGCNs.
Fichier principal
Vignette du fichier
paper326.pdf (196.39 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03339562 , version 1 (09-09-2021)
hal-03339562 , version 2 (07-10-2021)
hal-03339562 , version 3 (18-11-2021)

Identifiants

  • HAL Id : hal-03339562 , version 2

Citer

Nicholas Halliwell, Fabien Gandon, Freddy Lecue. A Simplified Benchmark for Non-ambiguous Explanations of Knowledge Graph Link Prediction using Relational Graph Convolutional Networks. International Semantic Web Conference, Oct 2021, Troy, United States. ⟨hal-03339562v2⟩

Collections

3IA-COTEDAZUR ANR
385 Consultations
132 Téléchargements

Partager

More