Post-buckling dynamics of spherical shells
Résumé
We explore the intrinsic dynamics of spherical shells immersed in a fluid in the vicinity of their buckled state, through experiments and three-dimensional axisymmetric simulations. The results are supported by a theoretical model that accurately describes the buckled shell as a two-variable-only oscillator. We quantify the effective ‘softening’ of shells above the buckling threshold, as observed in recent experiments on interactions between encapsulated microbubbles and acoustic waves. The main dissipation mechanism in the neighbouring fluid is also evidenced.