Predicting the propagation of acoustic waves using deep convolutional neural networks - Archive ouverte HAL Access content directly
Journal Articles Journal of Sound and Vibration Year : 2021

Predicting the propagation of acoustic waves using deep convolutional neural networks

Abstract

A novel approach for numerically propagating acoustic waves in two-dimensional quiescent media has been developed through a fully convolutional multi-scale neural network following a spatio-temporal auto- regressive strategy. This data-driven method managed to produce accurate results for long simulation times with a database of Lattice Boltzmann temporal simulations of propagating Gaussian Pulses, even in the case of initial conditions unseen during training time, such as the plane wave configuration or the two initial Gaussian pulses of opposed amplitudes. Two different choices of optimization objectives are compared, resulting in an improved prediction accuracy when adding the spatial gradient difference error to the traditional mean squared error loss function. Further accuracy gains are observed when performing an a posteriori correction on the neural network prediction based on the conservation of acoustic energy, indicating the benefit of including physical information in data-driven methods. Finally, the method is shown to be capable of relaxing the classical time-step constraint of LBM and to provide parallel properties suitable for accelerating significantly acoustic propagation simulations.
Fichier principal
Vignette du fichier
Alguacil_28358.pdf (4.59 Mo) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-03334280 , version 1 (06-10-2021)

Identifiers

Cite

Antonio Alguacil, Michaël Bauerheim, Marc C. Jacob, Stéphane Moreau. Predicting the propagation of acoustic waves using deep convolutional neural networks. Journal of Sound and Vibration, 2021, 512, ⟨10.1016/j.jsv.2021.116285⟩. ⟨hal-03334280⟩
56 View
99 Download

Altmetric

Share

Gmail Facebook X LinkedIn More