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A B S T R A C T

A novel approach for numerically propagating acoustic waves in two-dimensional quiescent
media has been developed through a fully convolutional multi-scale neural network following a
spatio-temporal auto-regressive strategy. This data-driven method managed to produce accurate
results for long simulation times with a database of Lattice Boltzmann temporal simulations of
propagating Gaussian Pulses, even in the case of initial conditions unseen during training time,
such as the plane wave configuration or the two initial Gaussian pulses of opposed amplitudes.
Two different choices of optimization objectives are compared, resulting in an improved
prediction accuracy when adding the spatial gradient difference error to the traditional mean
squared error loss function. Further accuracy gains are observed when performing an a
posteriori correction on the neural network prediction based on the conservation of acoustic
energy, indicating the benefit of including physical information in data-driven methods. Finally,
the method is shown to be capable of relaxing the classical time-step constraint of LBM
and to provide parallel properties suitable for accelerating significantly acoustic propagation
simulations.

1. Introduction

The prediction of noise generated by aero-acoustic sources has been approached in the last 50 years with a large range of
umerical and analytical techniques. Most recent numerical methods encompass direct computational aero-acoustics (CAA) or hybrid
AA coupled with acoustic analogies [1]. Direct CAA solves both source and acoustic propagation, which leads to high accuracy
ut also to an extreme CPU cost, thus limiting the approach to academic and benchmark cases. [2–4]. Hybrid methods, however,
eparate the computation of the hydrodynamic fluctuations in the source regions from far field one, where acoustic fluctuations
re propagated up to the observer’s position. Source regions are either modeled or calculated through high-order CFD whereas
ar field radiation calculations derive from less expensive methods, such as Lighthill’s acoustic analogy and its variants (Ffowcs

illiams–Hawkings (FW–H) equation [5]), or from the resolution of the Linearized Euler Equations (LEE). The main difficulty of
ybrid methods is the coupling of the source computation with the acoustic propagation computation [6]. Another difficulty arises
hen acoustic waves must be propagated in complex geometries or mean flows, such as ones encountered in turbomachinery [3,7]. A

ecent work from Pérez Arroyo et al. [8] showed a first-time Large Eddy Simulation coupled with FW–H and Goldstein [9] analogies
or the noise prediction of the full fan stage of the NASA SDT benchmark. One inherent limitation is the use of expensive high-order
umerical schemes to ensure low dissipation and dispersion properties. Therefore, these methods remain computationally expensive
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in particular in aircraft design phases where multiple model evaluations are needed for an optimum to be found. Surrogate models,
where the computational cost is significantly smaller than CAA, is of vital importance for the present needs of industry. Therefore,
this paper focuses on an alternative to high-order numerical schemes for the propagation of acoustic waves.
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Data-driven methods have been increasingly used as surrogate models in fluid mechanics-related problems, as reviewed
y Brunton et al. [10]. The objective of such techniques is to produce quick predictions, to control flows, or to optimize designs,
ithout resorting to the full resolution of the fluid mechanics first principles in high-dimensional spaces. They rely on extracting the
ominant statistical flow features from a database of representative examples (either simulated or experimental data). Traditionally,
ata-driven models have relied on some form of dimensionality reduction of high-fidelity data coupled with a time propagator:
uch reduced-order models (ROM) are based for example on the energy-based proper orthogonal decomposition (POD) [11] or
he frequency-based dynamic mode decomposition (DMD) [12]. A general review on such data-driven modal analysis methods can
e found in Taira et al. [13]. These techniques encode the statistics of coherent flow structures into modes, reducing the necessary
egrees of freedom required to describe the flow. While they have been primarily used for pure flow analysis [14,15], POD and DMD
re also employed to build surrogate models of dynamical systems. For instance, Tissot et al. [16] coupled a DMD on experimental
ata with a time propagator, creating a ROM predicting the dynamics of a cylinder wake. POD can also be combined with time
ropagators to create ROM predictors [17] or controllers [18]. However, data-dimensionality reductions techniques rely on strong
nderlying assumptions that can hinder the prediction of dynamics. An example is shown in Balajewicz et al. [17] for turbulence
odeling where the POD algorithm must be fine-tuned to correctly account for the smallest turbulent scales, which are naturally not
ell represented with POD, since the kinetic energy is dominated by large eddies. Thus, a strong domain knowledge is required to
chieve this fine tuning. Furthermore, strong assumptions on the linearity of the underlying dynamics (used in POD and DMD) can
lso be a source of discrepancies. These can be potentially overcome through a change of coordinates, using for instance a Koopman
perator [19]. However, finding these coordinates transform is far from trivial as discussed by Brunton et al. [10], which calls for a
ore systematic method to build ROMs of time-varying linear and non-linear problems. Modern machine learning techniques, such

s neural networks (NN), are able to efficiently model the spatio-temporal dynamics such as those found in aeroacoustic problems.
n fact, neural networks can leverage their power as universal function approximators [20] to approach any underlying dynamics
resent in a given dataset, linear or non-linear. They can work either on reduced-state data descriptors (e.g. Proper Orthogonal

Decomposition – POD – modes) or on full state representations (e.g. velocity, vorticity fields) to predict both steady and unsteady
phenomena with no a priori knowledge on the physics. This flexibility may facilitate the creation of fast and accurate surrogate
models.

An early example of modeling partial differential equations by neural networks can be found in Lagaris et al. [21]. However,
it is only with the advent of modern-day deep neural networks that such techniques have become readily available. Deep neural
networks [22,23] have been successfully used in image recognition tasks since 2012 when for the first time a convolutional neural
network won the ILSVRC competition [24], by classifying (i.e. assigning labels to images) 1.2 million images of the ImageNet dataset.
This achievement has been possible thanks to the combined use of large databases, hardware accelerators (graphical processing
units — GPUs) and efficient optimization algorithms. Convolutional neural networks (CNN) are of particular interest as they show
an ability to learn spatial statistical correlations from structured data, such as images or CFD-simulated flow fields. They have
been applied to a wide variety of aerospace physics-related problems, like surrogate modeling of 2D RANS simulations to predict
steady flow fields [25,26]. A non-linear mapping between inputs (boundary conditions) and outputs (pressure and velocity fields) is
performed, through the offline supervised training on a database of RANS simulations. CNNs have also been employed for resolving
a Poisson equation to enforce a divergence-free velocity in incompressible flow solvers [27,28]. Other examples include shape
optimization through an inverse mapping of pressure coefficients to airfoil geometries [29,30]. Fukami et al. [31] applied CNNs to
perform super-resolution of under-resolved turbulent fields. Note also that besides CNNs, other types of neural networks exist such as
fully-connected networks (FCN) or recurrent neural networks (RNN). Details about the different types of architecture can be found
in Goodfellow et al. [32]. Such models have also been used in fluid-mechanics related applications, sometimes in combination with
them. For example, a type of RNN called Long Short-Term Memory (LSTM) [33] has been coupled with CNNs to model the complete
space–time evolution of flow fields [34,35]. FCNs have also been employed in several contexts, such as improving the performance
of RANS models [36], PDE modeling through the use of Physical-Informed Neural Networks (PINNs) [37–39] or for learning efficient
data-driven numerical discretizations schemes [40]. These networks rely on non-linear operations to learn correlations from data, in
order to predict a new output given an optimization objective. As opposed to traditional approaches where the explicit resolution of
equations is needed, neural networks build an implicit understanding of physics from data observation and the choice of an objective
functional to minimize (called the loss function). This approach can greatly accelerate calculations, while maintaining acceptable
accuracy levels.

In the aeroacoustics field, a recent work by Tenney et al. [41] used several FCN networks to predict the fluctuating pressure
signal at some azimuthal and axial positions around a jet flow, using as input data from nearby sensors. Such a type of network
was also employed by Sack and Åbom [42] to perform the decomposition of acoustic modes inside ducts, which allows the learned
model to account for complex flow effects such as refraction, convection or viscous dissipation. However, to the authors knowledge,
the use of neural networks, in particular CNNs, has not been reported for the full-state spatio-temporal propagation of acoustic
waves, as confirmed by the recent review of Bianco et al. [43]. Yet, it is well known that CNN has a high ability to capture spatial
coherent patterns, which is typically the case of the radiated acoustic pressure fields which exhibit a spatially coherent topology. The
spatio-temporal dependence of acoustic propagation remains however a challenge for data-driven methods, due to the data causality
of time-series, and the lack of theoretical background on the errors made by CNNs, in particular when applied to a recurrent task
as the one proposed in the following. It suggests that a careful attention must be taken on the training strategies to build the CNN
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model. Previous works show the usefulness of using Multi-Scale CNNs for seismic wave propagation [44], or coupled LSTM–CNN
models for surface waves propagation governed by Saint-Venant equations [45,46]. Results from these works are mostly qualitative
and reveal difficulties for predicting accurately wave propagation over long time predictions. With these models, errors tend to
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accumulate over time up to a point at which the wavefronts completely lose their coherence. A key aspect of this study is thus to
evaluate the error propagated over time by the neural network, to establish strategies that limit the accumulation of errors, and
finally to propose a benchmark evaluated on a database obtained from a simple acoustic test case.

In the present work, a data-driven approach is proposed for the time-propagation of two-dimensional (2D) acoustic waves by
Multi-Scale CNN, trained on acoustic wavefields generated by a Lattice-Boltzmann Method CFD code. The network is trained to

enerate the next time-step of the acoustic density field given a number of previous steps. Once trained, the network is employed
n an auto-regressive way (using the prediction at a previous time step as a new input for the next prediction) in order to produce
he full time-series prediction of propagating waves. Controlling the long-term error propagation of such an iterative method is
ey to obtain reliable predictions. Physics-informed strategies as used by Raissi et al. [37] tend to improve the control over this
rror propagation, as the predictions are constrained by the prior physical knowledge of the problem, which is embedded into
he loss function or into the network architecture. However, tuning the new terms appearing in the loss functions is a non-trivial
ask [47] and in this work, an a posteriori physics-informed correction is employed. This strategy consists in training the neural
etwork without any prior physical knowledge and adding a physics-informed correction only at testing time, during the auto-
egressive phase. Such a correction consists in an energy-preserving correction (EPC) based on the conservation of acoustic energy.
his correction is naturally case-dependent and must be adapted to new boundary or initial conditions. However, it may improve
he re-usability of the trained neural network, thus alleviating the need to re-train the network on new configurations, which can be
omputationally costly. The proposed approach is benchmarked on a series of two-dimensional linear acoustic propagation cases,
ith no mean flow effects, inside a computational domain with reflecting boundary conditions at the four boundary walls. These
articular simple linear acoustics applications could be solved using established numerical methods, such as LEE. However, the
valuation of such spatio-temporal data driven approaches for acoustics is not trivial due to the lack of previous results. Therefore,
t is necessary to first evaluate the method on simplistic cases such as the ‘‘closed box’’ test, which facilitates the characterization of
he neural network temporal behavior. The acoustic waves are trapped for infinite long times inside the computational domain thus
llowing the evaluation of the approach for arbitrarily long time-series and for limited spatial resolutions. Once an accurate data-
riven methodology for spatio-temporal aeroacoustic predictions is established, the presented framework could be easily extended to
ore compelling applications, where traditional linearized numerical propagators become more costly or even fails (e.g. non-linear

propagation for large amplitude signals). In such contexts, the learning power of neural networks and their intrinsic non-linear
behavior could provide efficient predictive tools. Typical applications could range from atmospheric propagation or complex acoustic
scattering by obstacles. Furthermore, a very similar framework could also be employed for source detection algorithms by simply
performing an inverse time mapping.

Therefore, the objectives of the study are the following:

(i) To assess the ability of convolutional neural networks to propagate simple acoustic sources.
(ii) To compare extensively the results with reference cases for propagation (single gaussian pulse, two opposed-amplitude

Gaussian pulses, plane wave).
(iii) To study best practices for training accurately the CNN of interest. A particular attention is drawn on for the choice of the

optimization criteria.
(iv) To assess these data-driven simulations by a consistent error analysis, in particular to evaluate the benefits of employing an

a posteriori energy-preserving correction.
(v) To show potential benefits of neural network to accelerate simulations, such as relaxing time-step constraints or proposing

high parallelization capabilities.

The paper is divided as follows. In Section 2 Convolutional Neural Networks are presented, along with the training process, the
auto-regressive prediction strategies and the a posteriori energy-preserving correction formalism. Section 3 describes the Lattice
Boltzmann method used for generating the dataset and validates the method in terms of numerical dissipation with respect to
analytical test-cases. Section 4 shows results for the three aforementioned test-cases of acoustic propagation in a closed domain
without interior obstacles, and evaluates the EPC correction. A discussion about the choice of the Neural Network time-step and the
associated computational cost completes the study. Finally, conclusions are drawn in Section 5.

2. Deep convolutional neural network as wave propagator

2.1. Generalities of CNNs

A typical Convolutional Neural Network architecture consists in an input image being convolved successively by multiple filters
to output feature maps [48]. Non-Linear activation layers are placed in-between convolutional layers in order to learn a non-linear
mapping between input and output data. The most common example of activation layers is the rectified linear unit (ReLU) [49].
CNNs use sliding filters to learn spatially correlated features from data. First layers scan local features of the input image (for velocity,
density or pressure fields, small characteristic scales) while deeper layers learn high-level representations of the input images, as
convolutions scan a larger area of the image.



Journal of Sound and Vibration 512 (2021) 116285A. Alguacil et al.
4

Fig. 1. MultiScale CNN with three convolutional scales at quarter, half and full-resolution of the input field. Input is composed of 𝑝 consecutive frames 𝑡 − 1,
𝑡−2, . . . , 𝑡−𝑝 (figure with 𝑝 = 4 as used in this work) and output is a single frame at time 𝑡 and spatial resolution 𝑁𝑥 ×𝑁𝑦 = 200×200. 2D-convolution operations
are performed between the different feature layers. Activation layers are rectifying linear units (ReLU), represented by a black dashed line. When no activation is
used, a blue line is displayed. Depth after each convolution represents the number of filters (i.e. feature channels). Appendix A shows the detail for the number
of feature channels and convolution operations.

Each of the convolutional filters is parametrized by learnable weights, i.e. modified according to an optimization objective during
the training phase. These optimization criteria are targeted via a loss function. Therefore a given architecture will output different
results for a same input image if trained on different data, or with a different loss function. The main challenge of data-driven
techniques is thus to choose a representative dataset for the given problem, as well as an appropriate network architecture and
training loss function.

2.2. Neural network training for predicting discrete time-series

In order to train a neural network for the spatio-temporal propagation of acoustic waves, a supervised strategy on a feed-forward
Neural Network is chosen. Such a problem can be formalized by defining a neural network 𝐺𝜃 , parametrized by 𝜃 (multiplicative
weights and additive biases), over a dataset composed of 𝑁 pairs of input-target training samples (𝑋𝑛, 𝑌𝑛)1≤𝑛≤𝑁 . In the particular
case of spatio-temporal predictions, the pair (𝑋𝑛, 𝑌𝑛) is defined as:

{

𝑋𝑛 = {𝑥𝑡−𝑝𝑛 , 𝑥𝑡−𝑝+1𝑛 ,… , 𝑥𝑡−1𝑛 }
𝑌𝑛 = {𝑥𝑡𝑛}

(1)

where the 𝑥𝑡𝑛 denotes some time-indexed state. A supervised training of 𝐺𝜃 corresponds to the minimization of a loss function 
calculated as an error between the prediction output 𝐺𝜃(𝑋𝑛) and the target data 𝑌𝑛.

The minimization problem can be formalized as:

min
𝜃

1
𝑁

𝑁
∑

𝑛=1

(

𝐺𝜃(𝑋𝑛), 𝑌𝑛
)

(2)

A mini-batch stochastic gradient descent algorithm is used for minimizing the error, even though there are no guarantees that a
global optimum will be found, due to the non-convex nature of the problem. As this technique relies on calculating the gradient of the
error with respect to the different layer weights, an efficient backpropagation algorithm [50] is used, where the analytical gradients
of every layer output with respect to their weights are calculated at the forward pass (going from input to output). These gradients
are then used in a backward pass for updating all weights of the network, so that the cost function is minimized. Such operations
are performed automatically by the Pytorch open-source library [51], implementing automatic differentiation and optimization
algorithms. This framework is used in the present study.

2.3. Convolutional multi-scale architecture

𝐺𝜃 is modeled using a Multi-Scale Convolutional Neural Network approach, as defined by Mathieu et al. [52]. The original Multi-
Scale CNN architecture was employed to predict the next video frame given 4 concatenated previous frames sampled with equal
time-spacing as input. Multiple sequential ConvNets at different spatial resolutions are recursively used to output the prediction.

Reproducing Mathieu’s development for completeness, (dropping the 𝑛 subscript of Eq. (2) for clarity) let 𝑋 and 𝑌 be an input-
target tuple from the dataset, with spatial resolution 𝑁𝑥×𝑁𝑦. The objective is to define a function 𝐺𝜃 such that 𝐺𝜃(𝑋) approximates
𝑌 , i.e. 𝑌 = 𝐺𝜃(𝑋) where the hat notation denotes an approximated solution. Let 𝑠1,… , 𝑠𝑁𝑠𝑐𝑎𝑙𝑒𝑠

be the input field sizes for the
different network scales, 𝑋𝑘, 𝑌𝑘 the downscaled field of 𝑋 and 𝑌 . For example, if a three-scales MultiScale architecture is chosen
then 𝑠1 = 𝑁𝑥∕4 ×𝑁𝑦∕4, 𝑠2 = 𝑁𝑥∕2 ×𝑁𝑦∕2 and 𝑠3 = 𝑁𝑥 ×𝑁𝑦. 𝑢𝑘 is the interpolating function (bi-linear) to go from one resolution to
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another. Let 𝐺𝑘 be the sequential convolutional network that learns a prediction 𝑌𝑘 from 𝑋𝑘 and a coarse guess denoted 𝑌𝑘−1. 𝐺𝑘
makes predictions of size 𝑠𝑘 and is defined recursively as:

𝑌 = 𝐺
(

𝑋 , 𝑢
(

𝑌
))

(3)
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𝑘 𝑘 𝑘 𝑘 𝑘−1

he first ConvNet takes the downsampled (quarter scale) input, performs convolutions and applies activation functions while
aintaining the same resolution. The output of this first bank is then upsampled to a half-scale and concatenated to the downsampled

nput field (to the same half-scale), which is then processed by the second ConvNet. Finally, this operation is repeated for the full
cale bank and a final output is produced.

Training the MultiScale CNN for the spatio-temporal prediction of acoustic density fields, and following the notation of
ection 2.2, the acoustic density 𝜌′ is used as the state variable, 𝑥𝑡 = 𝜌′(𝑡), and 𝑝 = 4, i.e. 4 consecutive frames are used as input.
uch a procedure has been sketched in Fig. 1. Details about the complete neural network architecture is given in Appendix A.

This type of network has been sparsely used in the deep learning regression literature compared with other architectures such as
-Net [53]. The latter has been for example used by Thuerey et al. [25] for RANS predictions or by Lapeyre et al. [54] for sub-grid

cale modeling in turbulent combustion flows. Recent works have also used a Multi-Scale architecture on a range of fluid-mechanics
elated topics [55–58]. The main advantage of the multi-scale approach is that it separates the problem into simpler tasks: coarser
esolution scales tend to filter high wave numbers but are able to learn long-range space dependence whereas full-scale convolutions
re able to focus on high wavenumber information. Lee and You [58] presented the capabilities of multi-scale CNNs in fluid dynamics
redictions. They demonstrated that such a CNN is able to transport and integrate the multi-scale wave number information from
he input fields into the output field, through the successive convolutional layers and scales.

.4. Loss functions

For a set of input and output data, the multi-scale neural network generates predictions that minimize the following loss function:

 = 1
𝑁𝑥

1
𝑁𝑦

𝑁𝑥
∑

𝑖=1

𝑁𝑦
∑

𝑗=1

{

𝜆𝑙2𝑙2 + 𝜆𝑔𝑑𝑙𝑔𝑑𝑙
} (

𝑌𝑖,𝑗 , 𝑌𝑖,𝑗
)

(4)

where 𝑌𝑖,𝑗 and 𝑌𝑖,𝑗 correspond to the network prediction at the output of the 𝐺3 scale and its associated target field for a cell defined
by its indexes (𝑖, 𝑗). Both fields have a resolution of 𝑁𝑥 ×𝑁𝑦.

𝑙2 minimizes the L2-norm mean-square error (MSE) of the output with respect to the target fields (here corresponding to density
fields). For a cell defined by indexes (𝑖, 𝑗):

𝑙2
(

𝑌𝑖,𝑗 , 𝑌𝑖,𝑗
)

=
[

𝑌𝑖,𝑗 − 𝑌𝑖,𝑗
]2 (5)

𝑔𝑑𝑙 (called Gradient Difference Loss (GDL) and introduced by Mathieu et al. [52]) minimizes the L2-norm mean-square error of
both 𝑥- and 𝑦-components of the spatial gradients of density fields, discretized with forward first-order finite differences. For a cell
defined by indexes (𝑖, 𝑗):

𝑔𝑑𝑙
(

𝑌𝑖,𝑗 , 𝑌𝑖,𝑗
)

=
[(

𝑌𝑖+1,𝑗 − 𝑌𝑖,𝑗
)

−
(

𝑌𝑖+1,𝑗 − 𝑌𝑖,𝑗
)]2 +

[(

𝑌𝑖,𝑗+1 − 𝑌𝑖,𝑗
)

−
(

𝑌𝑖,𝑗+1 − 𝑌𝑖,𝑗
)]2 (6)

The mean-square error functions remain the classical choice for loss in regression problems. This choice supposes that data is
drawn from a Gaussian distribution. Therefore if a multi-modal data distribution is employed, results will tend towards the weighted
average between the probability modes. The gradient loss penalizes this feature of the mean-square error loss and forces the output
distribution to follow the multi-modal behavior of the target data, and as a result, sharpens the predicted fields.

The choice of weighting parameters 𝜆𝑙2 and 𝜆𝑔𝑑𝑙 will be carried out in the result section, along with a comparison between a
model trained only with the mean-square error loss and one combining both MSE and GDL.

2.5. Auto-regressive prediction strategy

The neural network training is stopped once the loss function converges to a steady value. The network is then employed as
an acoustic wave propagator, producing arbitrarily long spatio-temporal series through an auto-regressive strategy. For each new
prediction, the input state uses the previous prediction. This procedure is illustrated in algorithm 1, with an example given for the
particular case of 𝑝 = 4 inputs. Because of the choice of a multi-step input state, for each new prediction the 𝑝 input frames are
cyclically permuted. The last input frame is sent to the first-to-last index in the input state 𝑋̂𝑡−1, the first-to-last to the second-to-last,
etc. Finally, the first index frame is sent to the last index of the new input state. This operation is denoted by 𝜎(𝑝,𝑝−1,…,2,1)(𝑋̂𝑡−1).
Then the time frame at the last index 𝑥̂𝑡−𝑝 is replaced by the last prediction 𝑥̂𝑡. Such new state 𝑋̂𝑡−1 is used as the input for the next
prediction.
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Algorithm 1 Auto-regressive strategy
1: Train: 𝐺𝜃

Initialize: 𝑋̂−1 = {𝑥−𝑝, 𝑥−𝑝+1, ..., 𝑥−1}
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2:
= {𝑥−4, 𝑥−3, 𝑥−2, 𝑥−1}𝑝=4

3: while 𝑡 ∈
[

0, 𝑡𝑚𝑎𝑥 − 1
]

do
4: Initial state: 𝑋̂𝑡−1 = {𝑥̂𝑡−𝑝, 𝑥̂𝑡−𝑝+1, ..., 𝑥̂𝑡−1}
5: Predict: 𝑌 𝑡 = 𝐺𝜃(𝑋̂𝑡−1) = {𝑥̂𝑡}

6:
Permute: 𝜎(𝑝,𝑝−1,...,2,1)(𝑋̂𝑡−1) = {𝑥̂𝑡−𝑝+1, 𝑥̂𝑡−𝑝+2, ..., 𝑥̂𝑡−1, 𝑥̂𝑡−𝑝}

= {𝑥̂𝑡−3, 𝑥̂𝑡−2, 𝑥̂𝑡−1, 𝑥̂𝑡−4}𝑝=4
7: Replace: 𝑥̂𝑡−𝑝 ← 𝑥̂𝑡

8:
𝑋̂𝑡−1 = {𝑥̂𝑡−𝑝+1, ..., 𝑥̂𝑡−1, 𝑥̂𝑡}

= {𝑥̂𝑡−3, 𝑥̂𝑡−2, 𝑥̂𝑡−1, 𝑥̂𝑡}𝑝=4
9: end while

2.6. Energy preserving correction (EPC)

The strategy presented previously is based on the supervised training of a CNN. The loss function (Eq. (4)) employed for such
process does not make any assumption on the underlying physics present on the data. Recent works by Raissi et al. [37] on

hysical-Informed Neural Networks (PINN) show that adding some conservation equation term to the loss function improves the
redictive accuracy of the model by enforcing well-known physical constraints during the training process.

In the present work, a similar strategy is employed in order to improve the accuracy of the auto-regressive algorithm. A physics-
nformed energy preserving correction (EPC) is designed to enforce the conservation of the acoustic energy throughout the neural
etwork recursive prediction strategy. However, the chosen approach differs from Raissi’s one, as this correction is not integrated
s an additional training loss term. In contrast, the EPC is applied only at test time in order to correct the predictions made by
n already trained neural network. Such a choice is made in order to improve the re-usability of the neural network for different
roblem configurations: the EPC is case-dependent and must be adapted for every type of boundary condition or mean flow features.
hus, we hope to train the neural network only once using standard loss functions (and avoiding training instabilities as shown

n Wang et al. [47] when using many loss terms), and adapting the a posteriori correction for each particular case. This would yield
a smaller computational cost at training time and a greater flexibility and re-usability of neural networks, at the expense of designing
a posteriori corrections for each new test-case.

For the particular test cases studied in this work, the energy preserving correction is based on the observation that the acoustic
propagation takes place in a linear regime. The acoustic energy follows the conservation law in integral form:

d
d𝑡 ∫𝛺

𝐸𝑑𝑥 + ∫𝜕𝛺
𝐈 ⋅ 𝐧d𝜎 = −∫𝛺

d𝑥 (7)

where 𝐸 represents the acoustic energy density and 𝐈 the acoustic intensity:

𝐸 =
𝑝′2

2𝜌0𝑐20
+

𝜌0𝑣′2

2

𝐈 = 𝑝′𝐯′.
(8)

Note that such relationships are only valid for a uniform isentropic field at rest (at Mach 𝑀 = 0). The dissipation  is considered
nil and the LBM viscosity is low in order to preserve this hypothesis. For the studied configuration presented in Sections 3 and
4 , the acoustic propagation takes place in a closed domain with reflecting hard walls. This implies that the mean energy flux
across the closed domain containing no sources is zero. Since velocity fluctuations are related to pressure fluctuations via the Euler
equation and the density fluctuations are proportional to pressure fluctuations, the total energy conservation yields the total density
conservation.

Assuming a positive uniform drift (hypothesis validated in Section 4.2), let 𝜖 (≥ 0) be a correction for the density field 𝜌̂′(𝑡)
pplied after each autoregressive prediction, such that:

∫𝛺
(𝜌̂′(𝑡) − 𝜖)2d𝑥 = ∫𝛺

𝜌′(𝑡 = 0)2d𝑥 (9)

y symmetry of the problem:

∫𝛺
(𝜌̂′(𝑡))2d𝑥 = ∫𝛺

(𝜌′(𝑡 = 0) + 𝜖)2d𝑥 (10)

Define

𝑃 =
∫𝛺 𝜌̂′(𝑡)d𝑥
∫𝛺 d𝑥

𝑃0 =
∫𝛺 𝜌′(𝑡 = 0)d𝑥

∫𝛺 d𝑥
.

(11)
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Combining Eqs. (10) and (9) yields:

∫ 𝜖2𝑑𝑥 − 2∫ 𝜌′(𝑡)𝜖𝑑𝑥 = −∫ 𝜖2𝑑𝑥 − 2∫ 𝜌′(𝑡 = 0)𝑑𝑥 (12)
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Since the drift is supposed uniform, 𝜖 can move outside of the integrals, leading to the second order equation:

𝜖2 − 𝜖𝑃 + 𝜖𝑃0 = 0 (13)

This equation has the null solution 𝜖 = 0, which could correspond to no correction of the predicted field, and the following non-trivial
solution is found for the correction:

𝜖 = 𝑃0 − 𝑃 (14)

Eq. (14) reveals that the intuitive correction of the drift obtained by removing the mean difference between the current prediction
and the initial target field, corresponds actually to the energy conservation in time. Note also that the proposed correction only
holds for a particular case of boundary conditions (reflecting wall) and a quiescent mean flow. The change in boundary condition
(e.g. non-reflecting boundary conditions) would result in a non-zero acoustic energy flux through the domain boundaries, and thus
the proposed EPC would no longer hold.

The EPC correction is integrated in the auto-regressive algorithm as shown in algorithm 2, by simply adding the correcting term
𝜖 to the predicted acoustic density field at each recursive step.

Algorithm 2 Auto-regressive strategy with energy preserving correction
1: Train: 𝐺𝜃
2: Initialize: 𝑋̂−1 = {𝑥−𝑝, 𝑥−𝑝+1, ..., 𝑥−1}
3: while 𝑡 ∈

[

0, 𝑡𝑚𝑎𝑥 − 1
]

do
4: Initial state: 𝑋̂𝑡−1 = {𝑥̂𝑡−𝑝, 𝑥̂𝑡−𝑝+1, ..., 𝑥̂𝑡−1}
5: Predict: 𝑌 𝑡 = 𝐺𝜃(𝑋̂𝑡−1) = {𝑥̂𝑡}
6: EPC: 𝑥̂𝑡 ← 𝑥̂𝑡 + 𝜖
7: Permute: 𝜎(𝑝,𝑝−1,...,2,1)(𝑋̂𝑡−1) = {𝑥̂𝑡−𝑝+1, 𝑥̂𝑡−𝑝+2, ..., 𝑥̂𝑡−1, 𝑥̂𝑡−𝑝}
8: Replace: 𝑥̂𝑡−𝑝 ← 𝑥̂𝑡

9: 𝑋̂𝑡−1 = {𝑥̂𝑡−𝑝+1, ..., 𝑥̂𝑡−1, 𝑥̂𝑡}
10: end while

3. Dataset generation

The training dataset used for this study is composed of 2D domains with hard reflecting acoustic walls, no obstacles and Gaussian
ensity pulses as initial conditions. Such a simple academic configuration is preferred to more complex, yet more interesting cases,
uch as the acoustic propagation in complex mean flows. The main reason for this is the lack of accurate results regarding the capacity
f Neural Networks when performing wave propagation. Thus, the approach consists in benchmarking this data-driven method with
imple configurations and exposing the potential caveats of the spatio-temporal CNN predictive approach. These problems could
hen be identified and mitigated, before moving to more complex cases.

The Lattice-Boltzmann Method (LBM) Palabos code [59] is used to generate such data. These methods achieve second-order
patial accuracy, yet resulting in a small numerical dissipation similar to a 6th order optimized Navier–Stokes schemes [60], making
BM highly suitable for aeroacoustic predictions [61]. However classical BGK–LBM collision models can produce high frequency
nstabilities [62] when viscosity is low. As a consequence, a recursive and regularized BGK model (rrBGK–LBM) [63] is applied
o maintain code stability with low numerical dissipation. Details about the Lattice-Boltzmann are provided in appendix A 𝐷2𝑄9
attice discretization is chosen, representing the possible 9 discrete velocities for each two-dimensional (2D) lattice node.

.1. Numerical setup: Propagation of Gaussian pulses in a closed domain

The first dataset consists of 500 2D-simulations, with hard walls imposed on the four domain boundaries (Fig. 2). Reflecting walls
re modeled as classical half-way bounce-back nodes [64]. Density fields are initialized with a random number (varying between
ne and four) of Gaussian pulses located at random domain locations. The total density of a Gaussian pulse is defined as

𝜌(𝑥, 𝑦, 𝑡 = 0) = 𝜌0 + 𝜀 exp
[

− ln 2
𝑏2

(

(𝑥 − 𝑐𝑥)2 + (𝑦 − 𝑐𝑦)2
)

]

(15)

where 𝜀 is the pulse amplitude, 𝑏 is the pulse half-width, 𝑐𝑥 and 𝑐𝑦 are the x- and y-coordinates of the pulse center. All variables
are set in dimensionless units, also called ‘‘lattice units’’ (see Krüger et al. [65]). The reference lattice density is chosen as 𝜌0 = 1.
The computational domain physical dimension is chosen as 𝐷 (see Fig. 3a) , each direction being discretized with 𝑁𝑛𝑜𝑑𝑒𝑠 = 200
odes. The parameters 𝜀 and 𝑏∕𝐷 are fixed and equal to 0.001 and 0.06 respectively, such that 12 lattice nodes discretize the initial
ulse half-width (this choice is justified in Section 3.2). As the background density 𝜌0 = 1, the fluctuating density 𝜌′ is chosen such

that 𝜌0 ≫ 𝜌′ in order to avoid non-linear effects. Viscosity (in lattice units) is set to 𝜈 = 0.0. Zero-viscosity values tend to generate
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Fig. 2. Example of one simulation from the dataset. Initial conditions are composed of density Gaussian pulses located at random positions. Each initial condition
(𝑖𝑡 = 0) is stepped 231 LBM iterations in total. Acoustic density fields are saved every 3 LBM iterations. Shown fields correspond to LBM iteration (a) 0𝛥𝑡, (b)
30𝛥𝑡, (c) 60𝛥𝑡, (d) 90𝛥𝑡, (e) 120𝛥𝑡, (f) 150𝛥𝑡, (g) 180𝛥𝑡 and (h) 210𝛥𝑡.

numerical instabilities when employing the traditional BGK collision model. However, the rrGBK model is unconditionally stable at
𝑀 = 0 mean flow conditions [63].

The only relevant time-scale comes here from the acoustic propagation of waves, set to the speed of sound, where the relation
between physical and lattice units is given by

(𝑐𝑠)𝑙𝑏 = (𝑐𝑠)𝑝ℎ𝑦𝑠
𝛥𝑡
𝛥𝑥

. (16)

Therefore the choice of the LBM time-step is imposed by both the discretization of space and velocity-space, the former imposing
𝛥𝑥 and the latter, (𝑐𝑠)𝑙𝑏. Furthermore, the sound speed in the 𝐷2𝑄9 lattice (𝑐𝑠)𝑙𝑏 acts as a Courant number in this context, with a
fixed value of 1∕

√

3 ≃ 0.57, which is a limitation arising from the explicit time-discretization scheme employed by the LB method.
A normalized time may be defined as

𝜏 = 𝑁𝑖𝑡𝑒𝑟(𝑐𝑠)𝑙𝑏∕𝑁𝑛𝑜𝑑𝑒𝑠 (17)

where 𝑁𝑖𝑡𝑒𝑟 is the number of LB iterations and 𝑁𝑛𝑜𝑑𝑒𝑠 is the number of lattice nodes in one direction of the computational domain.
This time 𝜏 corresponds to the propagation time of an acoustic wave from one boundary to the other. Each training simulation is
stopped at 𝜏training = 0.67 and density fields are recorded at time-steps of 𝛥𝜏 = 0.0087 (i.e. each 3 LB iterations). The latter time-step
is the one used by the CNN.

This particular choice of time step (i.e. greater than the one imposed by the LB method) suggests that the CNN could achieve
some speed-ups compared with the LBM by performing low-error predictions at larger timesteps. The neural network is in fact not
bounded by the explicit time-discretization scheme limit (e.g. Courant number), whereas the LB time-step size is directly linked
to the spatial discretization. Thus, a NN could theoretically learn to overcome this limitations through a training process on data
with a lower frequency sampling than the LBM. This paper tries to provide some insights into the physics related to the previous
statements. In particular, all the network trainings are performed with an under-sampling strategy by setting 𝛥𝑡𝑁𝑁 = 3𝛥𝑡𝐿𝐵𝑀 . The
objective is to assess whether the CNN is able to accurately predict the acoustic propagation when using such conditions.

In practice, the computed LBM fields are packed into groups of 4 + 1 frames (input+target) for the CNN training. Snapshots
from a complete LBM run are shown in Fig. 2.

3.2. Validation of the LBM code

In order to demonstrate the dissipation behavior of the rrBGK–LBM solver, a benchmark simulation is performed by comparing
the free-field propagation of a single density gaussian pulse with the analytical solution, given by a zero-order Bessel function
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Fig. 3. Schematic of the three test cases. Domain size is 𝐷 × 𝐷. (a) propagation of single Gaussian Pulse of half-width 𝑏, (b) Two Pulses with opposed initial
amplitudes and (c) Plane wave with Gaussian profile propagating in x-direction.

Fig. 4. Propagation of Gaussian pulse with initial parameters 𝜀 = 0.001 and 𝑏∕𝐷 = 0.05. Comparison of the cross profiles of density fluctuations 𝜌′ for different
grid resolutions of at slice 𝑦∕𝐷 = 0.5, 𝑥∕𝐷 > 0.5 (axis of symmetry) and dimensionless time 𝜏 = 0.26. The legend indicates the number of lattice points per initial
Gaussian pulse half-width 𝑏∕𝛥𝑥 and the analytical solution is plotted in black. The figure to the right shows a zoom around the pulse maximum, marked by a
dashed rectangle.

𝐽0 [66]:

𝜌(𝑥, 𝑦, 𝑡) = 𝜌0 +
𝜀
2𝛼 ∫

∞

0
exp(−𝜉2∕(4𝛼)) cos(𝜉𝑡)𝐽0(𝜉𝜂)𝜉𝑑𝜉 (18)

where 𝛼 = log 2∕𝑏2 and 𝜂 =
√

𝑥2 + 𝑦2 represents the radial coordinate in absence of mean flow. A schematic of the problem setup is
hown in Fig. 3a.

Fig. 4 shows a slice of the density fluctuations in the line 𝑦∕𝐷 = 0.5 at time 𝜏 = 0.26 before the pulse impinges on any wall.
Comparison is made between the analytical solution and various simulations performed with various resolutions 𝑏∕𝛥𝑥 = 2.5, 5, 10,
0 and 40. Results show that at least 10 points per half-width are necessary to capture the propagation of the pulse accurately with
small numerical dissipation error. The 12-point-per-half-width criterion, chosen in Section 3.1, is therefore deemed sufficient to

apture accurately the acoustic wave propagation.
Furthermore, Fig. 5 shows two types of metrics to evaluate the numerical order of the spatial scheme. First, the 𝐿2-norm of the

difference between the analytical and the numerical solutions is shown (Fig. 5a), averaged over the whole slice shown in Fig. 4. The
error follows the expected second-order trend. The order of convergence of the spatial scheme is further estimated by a Richardson
extrapolation [67], which uses several solutions at different levels of grid refinement. Let 𝑝 be the order of convergence of the
numerical scheme and 𝑓 (𝛥𝑥) the numerical solution at a grid resolution 𝛥𝑥, then

𝑝 = log
(

𝑓 (𝛥𝑥∕4) − 𝑓 (𝛥𝑥∕2)
𝑓 (𝛥𝑥∕2) − 𝑓 (𝛥𝑥)

)

∕ log(2). (19)
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Fig. 5. Estimation of order of convergence of the rrBGK–LBM spatial scheme: (a) evolution of the 𝑟𝑚𝑠 error with the lattice resolution compared with the formal
spatial scheme order (second order) and (b) order of convergence of the spatial scheme (Richardson extrapolation).

Fig. 5b shows that the order of the numerical method converges to the expected second-order value as the grid is further refined,
thus confirming the dissipation properties of the rrBGK–LBM scheme.

3.3. Test cases for the trained neural network

The above validation case is also used for the validation of the Neural Network auto-regressive predictions. Henceforth this single
Gaussian pulse case is referred to as ‘‘Test A’’. While the training dataset contains very similar initial conditions as this first case,
t constitutes a baseline test for the neural network capability. Furthermore, as the training was only performed for one-step-ahead
redictions, this test case evaluates the accuracy of the auto-regressive strategy presented in Section 2.5.

In addition to this validation case, two more cases are used for evaluating the network performance:

• Test B: Double Gaussian pulse, with opposed initial amplitudes. One pulse is located at
(

𝑐𝑥, 𝑐𝑦
)

1 = (𝐷∕2 − 𝐿∕2, 𝐷∕2) with
amplitude 𝜀1 = −𝜀, the other at

(

𝑐𝑥, 𝑐𝑦
)

2 = (𝐷∕2 + 𝐿∕2, 𝐷∕2) with amplitude 𝜀2 = 𝜀. A schematic is shown in Fig. 3b. This test
aims at verifying the network generalization ability, i.e. the capacity to extrapolate a solution when the input falls outside the
training space. This test remains nonetheless close to the training data distribution.

• Test C: One-dimensional Gaussian plane wave, propagating in the 𝑥-direction, as shown in Fig. 3c. This configuration is a
challenging generalization case since it is very different from the combination of radially expanding waves addressed by the
training. Indeed, Sorteberg et al. [45] showed that ‘‘plane wave’’ cases were difficult to predict when training their network
with only cylindrical pulses.

4. Results

This section studies the performance of the Multi-Scale neural network trained with the dataset described in Section 3.1, by
comparing the resulting predictions for test cases A and B with the corresponding LBM predictions, taken as ‘‘Target’’ data (as usually
defined by the Machine Learning community). For case C, treated in Section 4.4, the target solution employed for comparison is
the analytical solution for a 1D propagating Gaussian pulse.

4.1. Training parameters

Two types of training strategies are taken into consideration. Training 𝑇1 is carried out by setting the loss function as a mean-
square error such that 𝜆𝑙2 = 1 and 𝜆𝑔𝑑𝑙 = 0. Training 𝑇2 sets 𝜆𝑙2 = 0.02 and 𝜆𝑔𝑑𝑙 = 0.98, combining mean-square error and gradient
loss functions. The ratio 𝜆𝑙2∕𝜆𝑔𝑑𝑙 is set to obtain similar values of the two parts of the loss function, so that both mean and spatial
gradient errors contribute equally to the parameter update during the optimization of the neural network. Recent works [47] have
demonstrated the importance of balancing the contributions from the different loss terms in order to increase the accuracy and
stability of the neural network training process.

400 simulations from the dataset are employed for training with 77 density fields per simulation at consecutive timesteps.
Training samples are used to calculate losses in order to optimize the network by modifying its weights and biases. The remaining
100 simulations are used for validation purposes: no model optimization is performed with this data. The validation is only used
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Fig. 6. Evolution of total losses for training samples and validation samples for (a) Training 𝑇1 (𝜆𝑙2 = 1, 𝜆𝑔𝑑𝑙 = 0) and (b) Training 𝑇2 (𝜆𝑙2 = 0.98 and 𝜆𝑔𝑑𝑙 = 0.02).

to ensure that a similar accuracy is achieved by the neural network on data unseen during the training phase. During the training,
the dataset is processed in batches to produce predictions (forward pass) followed by the update of network weight parameters 𝜃
(backward pass to minimize the error). A complete cycle through all dataset samples is named an epoch. This process is repeated
until the loss is converged. Training samples are shuffled at each epoch in order to increase data variability. Data points (input and
target fields) are also rotated randomly at four right angles in order to perform a second type of data augmentation.

The Adam stochastic optimization algorithm [68] is used, with an initial learning rate set to 1 × 10−4 and a 2% reduction each
time the loss value stagnates for more than 10 epochs.

Fig. 6 shows the evolution of both training and validation dataset errors during the optimization run. Network weights are
optimized until convergence. For 𝑇2, convergence on both components of the loss is reached. These two trainings provide two
optimized neural networks that can be now tested on the three benchmarks proposed in Section 3.3. Although the error is lower
for the MSE optimization, the GDL training is expected to be more robust for configurations exhibiting sudden amplitude changes
such as wave reflections against hard walls.

For the auto-regressive tests presented in the next sections, the two baseline networks 𝑇1 and 𝑇2 are employed using both
algorithm 1 (no EPC applied) and algorithm 2 (EPC applied). For the latter case, results using such a correction are presented
as 𝑇 𝐶

1 and 𝑇 𝐶
2 .

4.2. Auto-regressive test A: Gaussian pulse

Resulting fields for test case A, corresponding to a centered Gaussian pulse left propagating through the closed domain, are shown
in Fig. 7 for both 𝑇1 and 𝑇2 for several dimensionless times 𝜏 = 𝑁𝑖𝑡𝑒𝑟(𝑐𝑠)𝑙𝑏∕𝑁𝑛𝑜𝑑𝑒𝑠. Again, note that a single timestep performed by the
neural network corresponds to three LBM iterations 𝛥𝑡𝑁𝑁 = 3𝛥𝑡𝐿𝐵𝑀 . Snapshots of the density fluctuations along the line 𝑦∕𝐷 = 0.5
are plotted for the target, 𝑇1 and 𝑇2 in Fig. 8 at 18 representative times of the simulation. Note also that the figure scale changes
between the different rows. Good agreement is found between the reference field and predictions up to dimensionless times around
𝜏 ≃ 1.22 for both networks.

The initial Gaussian pulse spread is well captured (first row in Fig. 8). Both wall-pulse interactions (𝜏 ∼ 0.5) and pulse–pulse
interactions (𝜏 ∼ 1, after wall reflection) seem to be well predicted. Although the network was trained to predict fields one single
time-step ahead from the four input data fields, the recursive prediction of outputs does not perturb the predictions significantly
until late times (𝜏 = 1.22 corresponding to 141 recursive predictions). Both networks seem capable of predicting both the mean
level and the spatial gradients accurately, without introducing significant numerical dissipation or dispersion.

For times greater than 𝜏 = 1.22, a uniform drift in density level is observed. This drift is more significant in training 𝑇1 than 𝑇2.
This suggests that spatial gradients continue to be accurately predicted and that this drift is mostly homogeneous. As the inputs are
the outputs from previous predictions, the neural network can no longer correct itself once the inputs are already shifted. This is
a typical error amplification effect encountered with iterative algorithms. Training 𝑇2 suffers also from this mean level drift, even
though the amplitude error remains smaller than in 𝑇1. Furthermore, symmetry of the density field is lost from 𝜏 = 1.22 onward, as
seen in Fig. 7 (third row). This indicates that errors also tend to accumulate in the prediction of spatial gradients, even if this error
remains small. The evolution of the root-mean-square (rms) error relative to the maximum spatial values of the density target 𝜌′

and gradient of the density ∇𝜌′ is plotted in Fig. 9 and shown in black. These errors are defined as:

𝑅(𝜌′) =
√

1
𝑁

∑

𝑁

(

𝜌′ − 𝜌′
)2 and 𝑅̃(𝜌′) =

𝑅(𝜌′)
max(𝜌′)

(20)
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Fig. 7. Results for training 𝑇1 and 𝑇2, compared with LBM target data and test case A (pulse) for dimensionless time 𝜏 = 𝑡𝑐0∕𝐷.

and:

𝑅(∇𝜌′) =
√

1
𝑁

∑

𝑁

(

‖∇𝜌′ − ∇𝜌′‖2
)2 and 𝑅̃(∇𝜌′) =

𝑅(∇𝜌′)
max(∇𝜌′)

(21)

where ‖.‖2 represents the L2-norm. Both networks show a similar behavior: the error starts at very low levels (∼ 10−4) for mean-
square density error, corresponding to the converged loss found during training for the validation samples. Then the error grows
abruptly, until reaching 3% of the maximum density value for the MSE. The relative error remains however below 5% for times up
to 𝜏 = 0.5 for 𝑇1 and 𝜏 = 1.0 for 𝑇2.

For longer times (𝜏 ≥ 0.5), the relative error in the density fields keeps growing steadily up to values close to 1 in the case of
𝑇1, i.e. the relative error is in the order of the signal itself. This behavior comes mostly from the uniform drift, as the errors on field
gradients are one order of magnitude lower than errors on the density field.
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Fig. 8. Slice of density field at 𝑦∕𝐷 = 0.5 for Test Case A (pulse). First four images represent input fields, then predictions are performed recursively. ( )
Target data (LBM), ( ) training 𝑇1 (loss in MSE) and ( ) training 𝑇2 (loss in MSE+GDL).

This uniform drift fulfills the necessary hypothesis employed in the development of the a posteriori energy-preserving correction
presented in Section 2.6. As explained in Section 4.1, the EPC is applied to both networks 𝑇1 and 𝑇2 at each recursive prediction,
effectively creating two new corrected networks 𝑇 𝐶

1 (i.e. MSE loss coupled with EPC correction) and 𝑇 𝐶
2 (i.e. training with MSE and

gradient loss and EPC correction). The error evolution for test A is shown in Fig. 9, in red color. As expected, the evolution of the
gradient error is identical with or without correction (Fig. 9b). Such behavior demonstrates that the correction has no effect on the
error made by the neural network on spatial gradients, while it improves the error on the mean density level significantly (Fig. 9a).
Interestingly, network 𝑇 𝐶

2 (i.e. using both gradient loss and MSE during training) has a greater error than 𝑇 𝐶
1 between 𝜏 = 0.2 and

𝜏 = 1.2, even though it remains around the 10% threshold. For longer times, 𝑇 𝐶
1 and 𝑇 𝐶

2 errors follow similar trends and levels.
This seems to suggest that overall, both networks perform relatively similarly when the a posteriori correction is applied, and that
accurate solutions are found even for times not seen during the training (only times samples for 𝜏 ≤ 0.67 were present in training
data).

Such a behavior is clearly shown in Fig. 10, where slices of the resulting fields are plotted again at 𝑦∕𝐷 = 0.5 for several
non-dimensional times. Comparing with the results in Fig. 8, the EPC seems to avoid the long-term energy drift on both trainings
𝑇 𝐶
1 and 𝑇 𝐶

2 , obtaining a quasi-perfect fit with the LBM-calculated solution.
It can be concluded that both neural networks are able to predict the propagation of a single pulse recursively, which is a

very similar case to the training ones. With EPC, the long-time error is reduced by one order of magnitude. This highlights the
high capability of a physics-informed neural network to reproduce physics compared with standard data-driven only methods. Next
sections will discuss the ability of the network to predict propagation of acoustic waves with initial conditions that have not been
sampled during the training process. It will thus be checked if and how well the network is able to effectively learn the underlying
Green’s function for other types of initial conditions than those of the training.

4.3. Auto-regressive test B: Opposed Gaussian pulses

The second test case consists of two Gaussian pulses, with opposed initial amplitudes, propagating in a closed domain. Trainings
𝑇 𝐶
1 and 𝑇 𝐶

2 (EPC neural networks) are evaluated. Fig. 11 displays snapshots of density fields for both networks. Snapshots of the
density fluctuations along the line 𝑦∕𝐷 = 0.5 are plotted for the target 𝑇 𝐶

1 and 𝑇 𝐶
2 in Fig. 12 for the same dimensionless times as in

previous figures, and Fig. 13 shows the error evolution. Network 𝑇 𝐶
2 continues to predict both evolutions accurately for times up

to 𝜏 ∼ 1.2 or even further. It shows a clear advantage over 𝑇 𝐶
1 as mean square errors are systematically lower for networks using

gradient loss during training. In fact, for 𝑇 𝐶
2 , errors remain below the 10% threshold, whereas for training 𝑇 𝐶

1 some peaks with a
30% error relative to the rms density value are found before 𝜏 = 3.0. As seen in the density fields (Fig. 11), at these times wave
signals exhibit complex spatial patterns, with many local extrema over short distances, thus making the gradient prediction harder
for a network that has not seen those patterns during training. Both networks continue nonetheless to provide overall accurate
gradient predictions, and manage to capture both pulse–pulse and pulse–wall interactions (two front-waves adding or subtracting
their amplitudes during a short period of time). In fact, Fig. 13 shows bumps in the gradient error appearing periodically, which
correspond to these strong interactions phases. It seems that, although the error tends to grow, the RMSE of gradients tends to



Journal of Sound and Vibration 512 (2021) 116285A. Alguacil et al.
14

Fig. 9. Comparison of error evolution for trainings 𝑇1, 𝑇2, 𝑇 𝐶
1 and 𝑇 𝐶

2 for test Case A (pulse). (a) rms error of density relative to the maximum value of density
max(𝜌′) at each time-step (in dotted blue) and (b) rms error for the sum of density gradients relative to max(∇𝑥𝜌′ ,∇𝑦𝜌′) at each time-step (in dotted blue).

Fig. 10. Slice of density field at 𝑦∕𝐷 = 0.5 for Test Case A (Gaussian pulse) using the Energy-Preserving Correction. The four first images represent input
fields, then predictions are performed recursively. ( ) Target data (LBM), ( ) training 𝑇 𝐶

1 (loss in MSE + correction) and ( ) training 𝑇 𝐶
2 (loss in

MSE+GDL+correction).

recover after these interactions, and grows again at the next one. This phenomenon might be attributed to the strong unsteadiness
appearing during such events, which have not been frequently sampled during training.

4.4. Auto-regressive test C: Plane Gaussian pulse

A third test case is studied with both networks, with and without EPC, where initial conditions correspond to the analytical
solution for the one-dimensional propagation of a Gaussian pulse, propagating in both directions along the 𝑥-direction. This solution
is then extruded into the 𝑦-direction, in order to obtain 200 × 200 grids as for the training data and fed into the neural network.
Figs. 14 and 15 show the time evolution of a data slice on the 𝑥-axis at 𝑦∕𝐷 = 0.5 and the associated error over time respectively.
This case differs from the previous ones in that no complex pattern should appear, just two plane Gaussian pulses bouncing on the
walls and interacting at the domain center. Since the networks were trained exclusively with cylindrical pulses, the major challenge
for the network lies in its ability to understand that the plane-wave pulse must remain straight and coherent. As already mentioned
in Section 3.2, this was reported as the critical difficulty of the LSTM–CNN approach proposed by Sorteberg et al. [45] for seismic
waves. Good agreement is found for times below 𝜏 = 0.5 for all four cases, which correspond to the free-field initial propagation up
to the first wall interaction. All wall reflections are clearly marked in the error curves by the sudden variation of the relative error.
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Fig. 11. Results for training 𝑇 𝐶
1 and 𝑇 𝐶

2 and test case B (two opposed pulses) for dimensionless time 𝜏 = 𝑡𝑐0∕𝐷.

Fig. 12. Slice of density field at 𝑦∕𝐷 = 0.5 for Test Case B (two opposed pulses) using the Energy-Preserving Correction. Four first images represent input
fields, then predictions are performed recursively. ( ) Target data (LBM), ( ) training 𝑇 𝐶

1 (loss in MSE + correction) and ( ) training 𝑇 𝐶
2 (loss in

MSE+GDL+correction).

The local error diminution is mostly due to a sharp increase of the maximum value related to wall impingement, while the absolute
error maintains its value. From 𝜏 = 0.6 onwards, both 𝑇1 and 𝑇2 perform worse that their EPC counterpart (𝑇 𝐶

1 and 𝑇 𝐶
2 ). The effect

of the EPC on controlling the accuracy of the 𝑇1 prediction is particularly visible, as the EPC allows the network to reduce the error
related to the density drift by one order of magnitude. However, the EPC does not seem to completely eliminate such a drift, as 𝑇 𝐶

1
shows also a beginning of this phenomena, preceded by an increase of the gradient error (visible for example for 𝜏 = 1.83). Later
times show the propagation of accurate gradient predictions, while it is clear that the network tries to maintain good mean density
levels. For trainings 𝑇2, the benefit of using the EPC seems more limited, but still advantageous to the error control related to the
density drift.

The Neural Network manages to maintain the straight wavefront, as shown in Fig. 16, although such dynamics were not present
in the training set. This demonstrates the CNN ability to successfully extrapolate new data and to capture the underlying physics of
wave propagation. It should be however noted that other important parameters were kept constant (pulse spatial resolution, lattice
resolution), thus the generalization capability of the network has only been studied in the sense of changing the topology of initial
conditions.
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Fig. 13. Comparison of error evolution for trainings 𝑇 𝐶
1 and 𝑇 𝐶

2 for Test case B (two opposed pulses). (a) rms error of density relative to the maximum value
of density max(𝜌′) at each time-step (in dotted blue) and (b) rms error for the sum of density gradients relative to max(∇𝑥𝜌′ ,∇𝑦𝜌′) at each time-step (in dotted
blue).

Fig. 14. Slice of density field at 𝑦∕𝐷 = 0.5 for test case C (plane Gaussian pulse) using the Energy-Preserving Correction. First four images represent input
fields, then predictions are performed recursively. ( ) Target data (LBM), ( ) training 𝑇1 (loss in MSE), ( ), training 𝑇2 (loss in MSE+GDL), ( )
training 𝑇 𝐶

1 (loss in MSE + correction) and ( ) training 𝑇 𝐶
2 (loss in MSE+GDL+correction).

4.5. Parametric study: influence of input time-step

In order to assess the capability of the learned model to perform acoustic predictions at larger time-steps than the LBM reference,
a parametric study is performed by training the neural network at 𝛥𝑡𝑁𝑁 = 1, 2, 4, 8, 16, 32 and 64𝛥𝑡𝐿𝐵𝑀 . Each neural network is
stepped 500 iterations. Fig. 17 shows the evolution of the relative MSE error with respect to the neural network iterations and the
non-dimensional time 𝜏, for the EPC and no-EPC cases. When no EPC is employed, increasing the training time-step of the neural
network results in a monotonic increase of the error with respect to the number of performed evaluations. However, because the
time-step changes between the different trainings, a fixed time-horizon is reached in fewer iterations for larger values of 𝛥𝑡𝑁𝑁 ,
resulting in an overall reduced error as can be seen in Fig. 17c. This demonstrates that the main source of error in such kind
of auto-regressive method is the accumulation of error at each recurrence. This observation is only valid for 𝛥𝑡𝑁𝑁 < 8𝛥𝑡𝐿𝐵𝑀 , as
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Fig. 15. Comparison of error evolution for trainings 𝑇1, 𝑇2, 𝑇 𝐶
1 and 𝑇 𝐶

2 for test Case C (plane wave). (a) rms error of density relative to the maximum value
of density max(𝜌′) at each time-step (in dotted blue) and (b) rms error for the sum of density gradients relative to max(∇𝑥𝜌′ ,∇𝑦𝜌′) at each time-step (in dotted
blue).

Fig. 16. Results for training 𝑇 𝐶
1 and 𝑇 𝐶

2 , test case C (plane pulse) for dimensionless time 𝜏 = 𝑡𝑐0∕𝐷.

for larger time-steps, the prediction error diverges rapidly. This could be attributed to the increased complexity of the training
task when increasing 𝛥𝑡𝑁𝑁 : for reduced values, the change between two consecutive density fields is small, and thus the neural
network can learn a simple mapping of the time-derivative. However, for increased values of 𝛥𝑡𝑁𝑁 , the results suggest that there
is a threshold (between 𝛥𝑡𝑁𝑁 = 8𝛥𝑡𝐿𝐵𝑀 and 𝛥𝑡𝑁𝑁 = 16𝛥𝑡𝐿𝐵𝑀 ) from which the proposed method is incapable of learning such a
time-derivative, which is changing rapidly over time. Similar observations have been made by Liu et al. [69] when exploring other
types of temporal evolving PDES. Future investigations will continue the research on this topic, to study whether a change in the
neural network architecture or the loss function can help to better learn such complex mappings.

The use of the EPC correction (Fig. 17(b) and (d)) significantly limits the error accumulation over time. Surprisingly, the EPC
benefits more to the neural networks trained on larger time-steps but does not change the aforementioned threshold for which the
network learns the time-mapping. As demonstrated by Liu et al. [69], such results suggest that it is possible to combine several
neural networks, each trained on a different time-step, to obtain a temporal multi-scale predictor. This strategy can alleviate even
further the accumulation of error over time, as it minimizes the number of iterations required to reach a certain time-horizon. It
also allows the predictions to be parallel in time, which could further decrease the computational cost of such surrogates.

4.6. Computational cost

As one of the main objectives for the developing of such surrogates is to accelerate the direct acoustic simulations, the numerical
method (LBM) and the data-driven neural network computational costs are compared next. Results are shown in Table 1 for several
hardware and choices of neural network hyper-parameters, namely time-step and batch size. The batch size represents the number
of simulations which can be fed in parallel to the neural network. Two metrics are employed: the wall-clock time of one single
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Fig. 17. Evolution of relative error for cases (a and c) 𝑇2 and (b and d) 𝑇 𝐶
2 with respect to neural network iterations and dimensionless time 𝜏 = 𝑡𝑐0∕𝐷, for 10

initial random Gaussian pulses, averaged for each neural network iteration, for several training time-steps 𝛥𝑡𝑁𝑁 .

model evaluation divided by the batch size (i.e. to go from 𝑋𝑡−1 to 𝑋𝑡) and the wall-clock time necessary to reach a fixed time
horizon for one particular initial condition (i.e. a fixed 𝜏 equal to 1). Notice that for the baseline at 𝛥𝑡𝑁𝑁 = 𝛥𝑡𝐿𝐵𝑀 and batch
size bsz = 1 the direct LBM simulation outperforms the Neural Network on the wall-time per iteration metric, even on accelerated
hardware (GPU). However, the neural network becomes competitive by using two complementary approaches: first, the use of GPUs
allows the parallelization of simulations, and up to 256 initial conditions can be fed to the GPU memory, achieving a speed-up of
1.9 times with respect to the LBM baseline. Second, the use of the under-sampling strategy, i.e. the predictions at larger time-steps
(e.g. 𝛥𝑡𝑁𝑁 = 8𝛥𝑡𝐿𝐵𝑀 ), allows us to relax classical CFD constraints such as the CFL number, resulting in a acceleration of 6.9 times
with respect to the reference simulation. This new perspective brought by neural network offers a high potential to accelerate the
computations: fewer iterations are needed in order to reach the target time horizon (e.g. for 𝜏 = 1 shown in Table 1). The combination
of both strategies can achieve a speed-up of 15.5 times with respect to the LBM code.

5. Conclusion

A method for predicting the propagation of acoustic waves is presented in this work, based on the implementation of a Multi-Scale
convolutional neural network trained on LBM-generated data. Training samples consist of variations around the classical benchmark
of the propagation of 1 to 4 2D Gaussian pulses. Two types of training strategies are studied through the variation of loss functions.
The neural network is optimized to perform one-step predictions, and then employed in an auto-regressive strategy to produce
complete spatio-temporal series of acoustic wave propagation. An a posteriori energy-preserving correction (EPC) is proposed to
increase the accuracy of the predictions and added to the auto-regressive algorithm. Both networks are then evaluated with initial
conditions unseen during the training process, as a way to test the generalization performance. An increased accuracy is shown by the
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Table 1
Comparison of the computational cost for the reference LBM code and the neural network, tested on several hardware and with different hyper-parameters. For
a batch size bsz > 1, bsz simultaneous predictions are performed.

Method Timestep Batch size Hardware Wall-time per Wall-time to 𝜏=1 [s] Acceleration

S
S

D

t

A

d
s
o
s

A

d
𝐺
o

t
a
a
a
n
o
#

19

𝛥𝑡∕𝛥𝐿𝐵𝑀 iteration [s] factor (ref: LBM)

LBM 1 1 Intel Skylake 6126 (CPU) 0.0031 1.076 1.0
Neural network 1 1 Intel Skylake 6126 (CPU) 0.2521 87.825 0.012
Neural network 1 1 Nvidia V100 (GPU) 0.0036 1.249 0.861
Neural network 8 1 Nvidia V100 (GPU) 0.0036 0.156 6.897
Neural network 1 256 Nvidia V100 (GPU) 0.0016 0.555 1.925
Neural network 8 256 Nvidia V100 (GPU) 0.0016 0.069 15.594

network trained with a combination of penalizations on the mean square errors of both the density and its spatial gradients, even for
the challenging plane wave case. In all cases, the EPC correction yields a significant accuracy gain, at least one order of magnitude
compared to pure neural network predictions. This exemplifies the benefits of physics-informed neural networks compared with
pure data-driven methods. Here, the EPC allows such an a posteriori correction, that is without having to retrain the neural network,
which makes this correction flexible, and can be adapted depending on the case and physics to be solved. Finally, the proposed
Multiscale network with EPC reveals its ability to predict an unsteady phenomenon well beyond the duration of the one-step ahead
training. Moreover, the implemented neural network is able to predict flow fields at 8 times larger time-steps than the LBM reference.
The developed auto-regressive model does not seem to be limited by the classical limitations of standard explicit numerical methods
such as the Courant number, at least up to a certain point, opening the path to fast and efficient tools for acoustic propagation.
Further investigations should provide more insights into such a phenomenon, in order to formally address the difficulty of neural
networks to learn time mappings at very large time-steps. Finally, a similar framework could be employed in more compelling
application cases, in particular for the complex acoustic scattering with obstacles or the non-linear wave propagation in combustion
or atmospheric flows. The techniques presented in the current work provide some best practices in order to train the neural network
on new acoustic databases, for the subsequent temporal propagation of waves.
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ppendix A. Neural network architecture details

Table A.1 presents the details of the operations employed in the multi-scale neural network architecture. The three scales are
enoted 𝐺1 for the quarter resolution, 𝐺2 for the half-resolution and 𝐺3 for the full resolution convolutional neural networks. For
1 and 𝐺2, an bi-linear down-sampling operation is first performed. Then, for all three scales, a series of parametric convolution
perations are performed, using the following notation: 𝑘# denotes the kernel size of the convolution operation (e.g. 𝑘3 represents a

2D kernel of size 3 × 3). 𝑠# is the stride (i.e. the jump used to apply the convolution operator), which is always equal to 1. 𝑝# denotes
he amount of border padding used at each convolution operation. Padding is employed to keep the same field resolution before and
fter the convolution. Here, a replication padding strategy is employed in order to mimic the zero-acoustic density gradient present
t hard reflecting walls. 𝑎𝑅 represents the application of the ReLU non-linear activation function [49] and 𝑎𝐿 denotes applying
n identity activation function (equivalent to no activation function), in order to allow the network to predict both positive and
egative values at each scale output. Finally, #in → #out denotes the number of input and output feature fields at each convolution
peration, from which the total number of trainable parameters in one layer can be deduced by performing the following operation
parameters = (#in × 𝑘# × 𝑘# + 1) × #out.
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Table A.1
Summary of operations and number of parameters for Multi-Scale CNN with 3 banks of convolutions.
𝐺1 𝐺2 𝐺3

d

t

A

d
t
c
2

20

Layer Parameters Layer Parameters Layer Parameters

Downsample – Downsample – k5s1p2aR 5 → 32 4032N/4 N/2

k3s1p1aR 4 → 32 1184 k5s1p2aR 5 → 32 4032 k3s1p1aR 32 → 64 18,496
k3s1p1aR 32 → 64 18,496 k3s1p1aR 32 → 64 18,496 k3s1p1aR 64 → 128 73,856
k3s1p1aL 64 → 32 18,464 k3s1p1aR 64 → 128 73,856 k3s1p1aR 128 → 64 73,792
k3s1p1aL 32 → 1 289 k3s1p1aR 128 → 64 73,792 k3s1p1aL 64 → 32 18,464

Upsample – k3s1p1aL 64 → 32 18,464 k5s1p2aL 32 → 8 6408
𝑁 × 4

k3s1p1aL 32 → 1 289 k1s1p0aL 8 → 1 9

Upsample –
𝑁 × 2

Appendix B. Direct acoustic computation generation: The Lattice-Boltzmann method

The dataset is generated using the multi-physics lattice Boltzmann solver Palabos [59]. The equation that is being solved can be
erived from the Boltzmann equation in the discrete velocity space

𝜕𝑓𝑖
𝜕𝑡

+ 𝐜𝑖 ⋅ ∇𝑓𝑖 = 𝛺𝑖 (B.1)

where 𝑓𝑖 is the discrete density distribution function, 𝐜𝑖 is the discrete particle velocity in the 𝑖th direction and 𝛺𝑖 is an operator
representing the internal collisions between pairs of particles. The solver considers a second-order time–space discretization of
Eq. (B.1):

𝑓𝑖(𝐱 + 𝐜𝛥𝑡, 𝑡 + 𝛥𝑡) − 𝑓𝑖(𝐱, 𝑡) =
𝛥𝑡
2

[

𝛺𝑖(𝐱, 𝑡) +𝛺𝑖(𝐱 + 𝐜𝛥𝑡, 𝑡 + 𝛥𝑡)
]

(B.2)

where 𝐱 denotes the position, 𝑡 the time and 𝛥𝑡 the time-step.
The simplest form of the collision operator 𝛺𝑖 corresponds to the BGK model which considers a relaxation of the particle

populations 𝑓𝑖 towards the local equilibrium 𝑓 𝑒𝑞
𝑖 with a relaxation time 𝜏𝑓 :

𝛺𝑖 =
1
𝜏𝑓

(𝑓𝑖 − 𝑓 𝑒𝑞
𝑖 ) (B.3)

where 𝑓 𝑒𝑞
𝑖 is the equilibrium distribution (employing Einstein summation convention to the index 𝛼):

𝑓 𝑒𝑞
𝑖 = 𝜌𝑤𝑖

(

1 +
𝑐𝑖𝛼𝑢𝛼
𝑐2𝑠

+
(𝑐𝑖𝛼𝑢𝛼)2

2𝑐2𝑠
−

𝑢𝛼𝑢𝛼
2𝑐2𝑠

)

(B.4)

where 𝑐𝑠 is the lattice speed of sound, 𝑤𝑖 the weights of the lattice and 𝑢𝛼 is the macroscopic velocity in the 𝛼 direction.
The macroscopic quantities can be recovered through the statistical moments of the distribution functions: 𝜌 =

∑

𝑖 𝑓𝑖 and
𝜌𝑢𝛼 =

∑

𝑖 𝑓𝑖𝑐𝑖𝛼 . In this work, a more complex recursive and regularized version of the BGK collision model is employed to increase
he numerical stability [63].

ppendix C. Influence of the dataset size

Although the cost of generating the dataset of 500 simulations remains small (2D simulations, few time steps and small spatial
omain), the extrapolation of such a method to 3D configurations seems unfeasible with such large dataset sizes. The influence of
he dataset size is assessed in this section. This can help finding a minimum dataset size for which the accuracy is acceptable, which
ould then be employed in 3D trainings. For the study, the baseline (denoted as ‘‘100%’’ size) corresponds to 500 simulations with
31 iterations sampled at 𝛥𝑁𝑁 = 3𝛥𝐿𝐵 . In order to vary the size of the database, random samples of 4 inputs +1 output are taken in

order to increase or reduce the total number of training samples (called data points). Results are shown in Fig. C.1a, depicting the
error evolution averaged over 10 initial conditions of Gaussian pulses. The overall trend is that after a certain threshold (30% of the
original dataset size), the increase of data points results in a marginal increment of accuracy. This analysis demonstrates that the
employed approach can actually learn with fewer data from the one originally used in the baseline. It also suggests that this kind
of 2D studies could be performed to get an estimate of an adequate dataset size when training neural networks for 3D predictions
(e.g. 150 simulations instead of 500).
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Fig. C.1. Evolution of relative error for case 𝑇 𝐶
2 (employing the EPC) with respect to dimensionless time 𝜏 = 𝑡𝑐0∕𝐷, for 10 initial random Gaussian pulses,

averaged for each neural network iteration. Study on the influence of (a) the dataset size and (b) the choice of the maximum 𝜏training used during training.

Appendix D. Influence of the dataset time 𝝉

The influence of the time 𝜏training when the training database simulation is stopped is studied here, in order to test whether the
neural network overfits the non-dimensional time seen during training. Several datasets have been created, by changing the time
horizon of the training simulations. The comparison is performed at iso-dataset size, the total number of data points (groups of 4
inputs and 1 target snapshot) is kept constant at 20% of the original baseline size to speed-up trainings. This implies that for large
𝜏training, fewer simulations with more time-steps are required, while for low 𝜏training, more initial conditions are used, with a low
count of iterations per simulation. Even if there can be an implicit bias in the dataset related to the difference in the number of
initial conditions, the proposed study is the only way to study the influence of the 𝜏training parameter without accounting for the
effect of the dataset size. The time-step of the neural networks remains fixed at 𝛥𝑁𝑁 = 3𝛥𝐿𝐵 , and during the inference phase, the
surrogate model is stepped up to reach 𝜏 = 1.6. Fig. C.1b shows the comparison between the several trainings, for strategy 𝑇 𝐶

2 . For
low non-dimensional times (𝜏training < 0.17), the 3 trained neural networks produce inaccurate results. This is explained because
of the lack of sufficient examples of wave–wall interactions in the dataset. After a certain threshold (𝜏training > 0.35), the neural
network accuracy no longer depends on the choice of 𝜏training, as the error follows a very similar trend for all the trained neural
networks.
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