Propagation dynamics of solutions to spatially periodic reaction-diffusion systems with hybrid nonlinearity - Archive ouverte HAL Access content directly
Preprints, Working Papers, ... Year : 2021

Propagation dynamics of solutions to spatially periodic reaction-diffusion systems with hybrid nonlinearity

Abstract

In this paper we investigate the dynamical properties of a spatially periodic reaction-diffusion system whose reaction terms are of hybrid nature in the sense that they are partly competitive and partly cooperative depending on the value of the solution. This class of problems includes various biologically relevant models and in particular many models focusing on the Darwinian evolution of species. We start by studying the principal eigenvalue of the associated differential operator and establishing a minimal speed formula for linear monotone systems. In particular, we show that the generalized Dirichlet principal eigenvalue and the periodic principal eigenvalue may not coincide when the reaction matrix is not symmetric, in sharp contrast with the case of scalar equations. We establish a sufficient condition under which equality holds for the two notions. We also show that the propagation speed may be different depending on the direction of propagation, even in the absence of a first-order advection term, again in a sharp contrast with scalar equations. Next we reveal the relation between the hair-trigger property of front propagation and the sign of the periodic principal eigenvalue. Finally, we discuss the linear determinacy of the propagation speed and also establish the existence of travelling waves travelling whose speeds greater than the minimal speed is also proved. We apply our results to an important class of epidemiological models with genetic mutations.
Fichier principal
Vignette du fichier
Manuscrit.pdf (684.1 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-03325515 , version 1 (25-08-2021)

Identifiers

  • HAL Id : hal-03325515 , version 1

Cite

Quentin Griette, Hiroshi Matano. Propagation dynamics of solutions to spatially periodic reaction-diffusion systems with hybrid nonlinearity. 2021. ⟨hal-03325515⟩
36 View
59 Download

Share

Gmail Facebook X LinkedIn More